The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Achromobacter

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Achromobacter

 

High impact information on Achromobacter

  • Sequences of the alpha and beta subunits were determined by analysis of peptides generated by digestion of the S-pyridylethylated protein with Achromobacter protease I or alpha-chymotrypsin and by chemical cleavage with cyanogen bromide or 2-(2'-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine [6].
  • Extensive digestion of smg p21B with Achromobacter protease I yielded two C-terminal tripeptides that contained serine and cysteine in a molar ratio of 2:1 [7].
  • One of the purified Mr 42,000 proteins was digested with Achromobacter protease I. This protein was identified as a cytokeratin 8 (CK 8) fragment based on both molecular mass determination and molecular mass searching of Achromobacter protease I-digested fragments of proteins registered in a protein sequence data base [8].
  • Furthermore, similarities of protease IV to the lysine-specific endoprotease of Achromobacter lyticus suggested three possible disulfide bonds in protease IV [9].
  • Investigation of a peptide responsible for amyloid fibril formation of beta 2-microglobulin by achromobacter protease I [10].
 

Chemical compound and disease context of Achromobacter

  • Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase [11].
  • Extensive digestion of rhoA p21 with Achromobacter protease I yielded a C-terminal peptide, Ser-Gly-Cys190, that lacked the three C-terminal amino acids predicted from the cDNA but was geranylgeranylated and carboxyl methylated at the cysteine residue [12].
  • In order to identify and locate the labeled amino acid in the steroid-binding site, the steroidal portion of the bound label was first removed and the protein was digested with Achromobacter protease and subdigested with trypsin [13].
  • The structure of copper-nitrite reductase from Achromobacter cycloclastes at five pH values, with NO2- bound and with type II copper depleted [14].
  • Peptide mapping following digestion with Achromobacter protease I or Staphylococcus aureus V8 protease supported the view that, whereas protein-tyrosine-phosphatase subtypes 1A and 1B are different, their soluble and particulate counterparts are closely related structurally and are distinct from serine/threonine phosphatases 1 and 2A [15].
 

Biological context of Achromobacter

 

Anatomical context of Achromobacter

  • In order to determine the complete structure of the modified histone heterodimer, p28 from both testis and sperm was purified. p28 was digested with Achromobacter lyticus protease I or Staphylococcus aureus V8 protease to give proteolytic fragments that were separated by HPLC [21].
 

Gene context of Achromobacter

 

Analytical, diagnostic and therapeutic context of Achromobacter

References

  1. H218O isotope exchange studies on the mechanism of reduction of nitric oxide and nitrite to nitrous oxide by denitrifying bacteria. Evidence for an electrophilic nitrosyl during reduction of nitric oxide. Ye, R.W., Toro-Suarez, I., Tiedje, J.M., Averill, B.A. J. Biol. Chem. (1991) [Pubmed]
  2. Protein sequence analysis, cloning, and expression of flammutoxin, a pore-forming cytolysin from Flammulina velutipes. Maturation of dimeric precursor to monomeric active form by carboxyl-terminal truncation. Tomita, T., Mizumachi, Y., Chong, K., Ogawa, K., Konishi, N., Sugawara-Tomita, N., Dohmae, N., Hashimoto, Y., Takio, K. J. Biol. Chem. (2004) [Pubmed]
  3. Steady-state nitric oxide concentrations during denitrification. Goretski, J., Zafiriou, O.C., Hollocher, T.C. J. Biol. Chem. (1990) [Pubmed]
  4. Achromobacter xylosoxidans septic arthritis in a patient with systemic lupus erythematosus. San Miguel, V.V., Lavery, J.P., York, J.C., Lisse, J.R. Arthritis Rheum. (1991) [Pubmed]
  5. Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. Donaire, A., Jiménez, B., Fernández, C.O., Pierattelli, R., Niizeki, T., Moratal, J.M., Hall, J.F., Kohzuma, T., Hasnain, S.S., Vila, A.J. J. Am. Chem. Soc. (2002) [Pubmed]
  6. Primary structure of two-chain botrocetin, a von Willebrand factor modulator purified from the venom of Bothrops jararaca. Usami, Y., Fujimura, Y., Suzuki, M., Ozeki, Y., Nishio, K., Fukui, H., Titani, K. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  7. Posttranslationally processed structure of the human platelet protein smg p21B: evidence for geranylgeranylation and carboxyl methylation of the C-terminal cysteine. Kawata, M., Farnsworth, C.C., Yoshida, Y., Gelb, M.H., Glomset, J.A., Takai, Y. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  8. Human colorectal carcinomas specifically accumulate Mr 42,000 ubiquitin-conjugated cytokeratin 8 fragments. Nishibori, H., Matsuno, Y., Iwaya, M., Osada, T., Kubomura, N., Iwamatsu, A., Kohno, H., Sato, S., Kitajima, M., Hirohashi, S. Cancer Res. (1996) [Pubmed]
  9. Identification of the active site residues of Pseudomonas aeruginosa protease IV. Importance of enzyme activity in autoprocessing and activation. Traidej, M., Marquart, M.E., Caballero, A.R., Thibodeaux, B.A., O'Callaghan, R.J. J. Biol. Chem. (2003) [Pubmed]
  10. Investigation of a peptide responsible for amyloid fibril formation of beta 2-microglobulin by achromobacter protease I. Kozhukh, G.V., Hagihara, Y., Kawakami, T., Hasegawa, K., Naiki, H., Goto, Y. J. Biol. Chem. (2002) [Pubmed]
  11. Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase. Dooley, D.M., Moog, R.S., Liu, M.Y., Payne, W.J., LeGall, J. J. Biol. Chem. (1988) [Pubmed]
  12. The posttranslationally modified C-terminal structure of bovine aortic smooth muscle rhoA p21. Katayama, M., Kawata, M., Yoshida, Y., Horiuchi, H., Yamamoto, T., Matsuura, Y., Takai, Y. J. Biol. Chem. (1991) [Pubmed]
  13. Identification of lysine 134 in the steroid-binding site of the sex steroid-binding protein of human plasma. Namkung, P.C., Kumar, S., Walsh, K.A., Petra, P.H. J. Biol. Chem. (1990) [Pubmed]
  14. The structure of copper-nitrite reductase from Achromobacter cycloclastes at five pH values, with NO2- bound and with type II copper depleted. Adman, E.T., Godden, J.W., Turley, S. J. Biol. Chem. (1995) [Pubmed]
  15. Characterization of the major protein-tyrosine-phosphatases of human placenta. Tonks, N.K., Diltz, C.D., Fischer, E.H. J. Biol. Chem. (1988) [Pubmed]
  16. Rapid purification and characterization of human platelet glycoprotein V: the amino acid sequence contains leucine-rich repetitive modules as in glycoprotein Ib. Shimomura, T., Fujimura, K., Maehama, S., Takemoto, M., Oda, K., Fujimoto, T., Oyama, R., Suzuki, M., Ichihara-Tanaka, K., Titani, K. Blood (1990) [Pubmed]
  17. Identification of three catalytic triad constituents and Asp-225 essential for function of lysine-specific serine protease, Achromobacter protease I. Norioka, S., Ohta, S., Ohara, T., Lim, S.I., Sakiyama, F. J. Biol. Chem. (1994) [Pubmed]
  18. The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. Vedler, E., Vahter, M., Heinaru, A. J. Bacteriol. (2004) [Pubmed]
  19. Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Vedler, E., Kõiv, V., Heinaru, A. Gene (2000) [Pubmed]
  20. Purification, characterization, and amino acid sequencing of DNase gamma from rat spleen. Shiokawa, D., Iwamatsu, A., Tanuma, S. Arch. Biochem. Biophys. (1997) [Pubmed]
  21. Structure of a covalently cross-linked form of core histones present in the starfish sperm. Shimizu, T., Takao, T., Hozumi, K., Nunomura, K., Ohta, S., Shimonishi, Y., Ikegami, S. Biochemistry (1997) [Pubmed]
  22. Susceptibility of baboon aorta elastin to proteolysis. Desfontaines, L., Hornebeck, W., Wei, S.M., Robert, L., Lafuma, C. Biol. Chem. Hoppe-Seyler (1990) [Pubmed]
  23. Profiling of Caenorhabditis elegans proteins using two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Kaji, H., Tsuji, T., Mawuenyega, K.G., Wakamiya, A., Taoka, M., Isobe, T. Electrophoresis (2000) [Pubmed]
  24. Cloning and expression of a chick liver glutathione S-transferase CL 3 subunit with the use of a baculovirus expression system. Chang, L.H., Fan, J.Y., Liu, L.F., Tsai, S.P., Tam, M.F. Biochem. J. (1992) [Pubmed]
  25. The complete amino acid sequence of the mature form of rat sepiapterin reductase. Oyama, R., Katoh, S., Sueoka, T., Suzuki, M., Ichinose, H., Nagatsu, T., Titani, K. Biochem. Biophys. Res. Commun. (1990) [Pubmed]
  26. The primary structure of porcine liver acylamino acid-releasing enzyme deduced from cDNA sequences. Mitta, M., Asada, K., Uchimura, Y., Kimizuka, F., Kato, I., Sakiyama, F., Tsunasawa, S. J. Biochem. (1989) [Pubmed]
  27. Crystallization of nitrite reductase from Achromobacter cycloclastes. Turley, S., Adman, E.T., Sieker, L.C., Liu, M.Y., Payne, W.J., LeGall, J. J. Mol. Biol. (1988) [Pubmed]
  28. p-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol. Hopper, D.J., Bossert, I.D., Rhodes-Roberts, M.E. J. Bacteriol. (1991) [Pubmed]
  29. Crystal structure of a NO-forming nitrite reductase mutant: an analog of a transition state in enzymatic reaction. Liu, S.Q., Chang, T., Liu, M.Y., LeGall, J., Chang, W.C., Zhang, J.P., Liang, D.C., Chang, W.R. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  30. L-Lysine: 2-oxoglutarate 6-aminotransferase. Subunit structure composed of non-identical polypeptides and pyridoxal 5'-phosphate-binding subunit. Yagi, T., Misono, H., Kurihara, N., Yamamoto, T., Soda, K. J. Biochem. (1980) [Pubmed]
 
WikiGenes - Universities