The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Chromosomes, Bacterial

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chromosomes, Bacterial


High impact information on Chromosomes, Bacterial


Chemical compound and disease context of Chromosomes, Bacterial


Biological context of Chromosomes, Bacterial


Associations of Chromosomes, Bacterial with chemical compounds


Gene context of Chromosomes, Bacterial

  • All spontaneously formed thermoresistant colonies derived from MC1061-2 carried wild-type frr that resided either in the bacterial chromosome by re-exchange or in the plasmid, which became temperature-resistant [25].
  • For H2O2 damage, this rescue effect was correlated with the repair of oxidative lesions in the bacterial chromosome by the Apn1 protein [26].
  • Both transcriptional (operon) and translational (gene) fusions of either rpoB or rpoC to the lacZ reporter were used to monitor their in vivo expression by inserting single copies of these fusions into the bacterial chromosome on integration-proficient lambda vectors [27].
  • DNA gyrase on the bacterial chromosome. Oxolinic acid-induced DNA cleavage in the dnaA-gyrB region [28].
  • These mutants carry a mutation in the dnaE gene, encoding the alpha (polymerase) subunit of DNA polymerase III holoenzyme, which is responsible for the faithful replication of the bacterial chromosome [29].

Analytical, diagnostic and therapeutic context of Chromosomes, Bacterial


  1. Association of the folded chromosome with the cell envelope of E. coli: characterization of the proteins at the DNA-membrane attachment site. Portalier, R., Worcel, A. Cell (1976) [Pubmed]
  2. Specialized transducing phages for ribosomal protein genes of Escherichia coli. Jaskunas, S.R., Lindahl, L., Nomura, M. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  3. Multiple-drug resistance in D-tartrate-positive Salmonella enterica serovar paratyphi B isolates from poultry is mediated by class 2 integrons inserted into the bacterial chromosome. Miko, A., Pries, K., Schroeter, A., Helmuth, R. Antimicrob. Agents Chemother. (2003) [Pubmed]
  4. Integration of the bacteriophage phi 3T-coded thymidylate synthetase gene into the Bacillus subtilis chromosome. Stroynowski, I.T. J. Bacteriol. (1981) [Pubmed]
  5. A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins. Fuchs, T.M., Deppisch, H., Scarlato, V., Gross, R. J. Bacteriol. (1996) [Pubmed]
  6. Nalidixic acid and bacterial chromosome replication. Crumplin, G.C., Smith, J.T. Nature (1976) [Pubmed]
  7. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. Glomski, I.J., Gedde, M.M., Tsang, A.W., Swanson, J.A., Portnoy, D.A. J. Cell Biol. (2002) [Pubmed]
  8. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. Fung, E., Bouet, J.Y., Funnell, B.E. EMBO J. (2001) [Pubmed]
  9. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? Carlioz, A., Touati, D. EMBO J. (1986) [Pubmed]
  10. Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Bull, H.J., Lombardo, M.J., Rosenberg, S.M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  11. Mapping of insertion elements IS1, IS2 and IS3 on the Escherichia coli K-12 chromosome. Role of the insertion elements in formation of Hfrs and F' factors and in rearrangement of bacterial chromosomes. Umeda, M., Ohtsubo, E. J. Mol. Biol. (1989) [Pubmed]
  12. Excision repair of ultraviolet-irradiated deoxyribonucleic acid in plasmolyzed cells of Escherichia coli. Seeberg, E., Strike, P. J. Bacteriol. (1976) [Pubmed]
  13. Coupling generation of cytomegalovirus deletion mutants and amplification of viral BAC clones. Wang, W., Patterson, C.E., Yang, S., Zhu, H. J. Virol. Methods (2004) [Pubmed]
  14. Exploitation of a chromosomally integrated lactose operon for controlled gene expression in Lactococcus lactis. Payne, J., MacCormick, C.A., Griffin, H.G., Gasson, M.J. FEMS Microbiol. Lett. (1996) [Pubmed]
  15. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Fijalkowska, I.J., Jonczyk, P., Tkaczyk, M.M., Bialoskorska, M., Schaaper, R.M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  16. Trp aporepressor production is controlled by autogenous regulation and inefficient translation. Kelley, R.L., Yanofsky, C. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  17. Two-dimensional S1 nuclease heteroduplex mapping: detection of rearrangements in bacterial genomes. Yee, T., Inouye, M. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  18. pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Reverchon, S., Nasser, W., Robert-Baudouy, J. Mol. Microbiol. (1994) [Pubmed]
  19. Gene expression during development of Myxococcus xanthus. Analysis of the genes for protein S. Downard, J.S., Kupfer, D., Zusman, D.R. J. Mol. Biol. (1984) [Pubmed]
  20. DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Kenyon, C.J., Walker, G.C. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  21. Molecular and mutational analysis of three genes preceding pyrE on the Escherichia coli chromosome. Poulsen, P., Andersen, J.T., Jensen, K.F. Mol. Microbiol. (1989) [Pubmed]
  22. Chromosomally mediated beta-lactamase production and gentamicin resistance in Enterococcus faecalis. Rice, L.B., Eliopoulos, G.M., Wennersten, C., Goldmann, D., Jacoby, G.A., Moellering, R.C. Antimicrob. Agents Chemother. (1991) [Pubmed]
  23. Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. Mohan, S., Aghion, J., Guillen, N., Dubnau, D. J. Bacteriol. (1989) [Pubmed]
  24. Indirect selection for plasmid mutants: isolation of ColVBtrp mutants defective in self-maintenance in Escherichia coli. Koyama, A.H., Wada, C., Nagata, T., Yura, T. J. Bacteriol. (1975) [Pubmed]
  25. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Janosi, L., Shimizu, I., Kaji, A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  26. Complementation of DNA repair-deficient Escherichia coli by the yeast Apn1 apurinic/apyrimidinic endonuclease gene. Ramotar, D., Popoff, S.C., Demple, B. Mol. Microbiol. (1991) [Pubmed]
  27. Synthesis of the beta and beta' subunits of Escherichia coli RNA polymerase is autogenously regulated in vivo by both transcriptional and translational mechanisms. Dykxhoorn, D.M., St Pierre, R., Linn, T. Mol. Microbiol. (1996) [Pubmed]
  28. DNA gyrase on the bacterial chromosome. Oxolinic acid-induced DNA cleavage in the dnaA-gyrB region. Franco, R.J., Drlica, K. J. Mol. Biol. (1988) [Pubmed]
  29. The mutational specificity of two Escherichia coli dnaE antimutator alleles as determined from lacI mutation spectra. Schaaper, R.M. Genetics (1993) [Pubmed]
  30. Cloning and orientation of the gene encoding polynucleotide phosphorylase in Escherichia coli. Crofton, S., Dennis, P.P. J. Bacteriol. (1983) [Pubmed]
  31. Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. Nunn, D., Bergman, S., Lory, S. J. Bacteriol. (1990) [Pubmed]
WikiGenes - Universities