The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Chroman-4-ol     chroman-4-ol

Synonyms: SureCN131445, AG-A-74527, AG-D-93664, ACMC-209d04, ACMC-20mukj, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chromanol

  • Selective blockers (chromanol 293B, HMR-1556, L-735,821) of the KvLQT1 plus minK channel, which carriy the slow delayed rectifier potassium current (I(Ks)), were also considered to treat arrhythmias, including atrial fibrillation (AF) [1].
  • Several of the new chromanol compounds have high affinity for the racemic [3H]CP-101,606 binding site on the NMDA receptor and protect against glutamate toxicity in cultured hippocampal neurons [2].
  • A novel phospholipid containing a chromanol structure at its polar head group was synthesized from egg yolk phosphatidylcholine and 2,5,7,8-tetramethyl-6-hydroxy-2-(hydroxyethyl)chroman by transphosphatidylation catalyzed by phospholipase D from Streptomyces lydicus [3].
  • A novel phosphate ester containing a chromanol structure was synthesized from 1,2-diacyl-sn-glycero-3-phospho-2'-hydroxyethyl-2',5',7',8'-tetramethyl- 6' -hydroxychroman (PCh) by hydrolysis catalyzed by phospholipase C from Bacillus cereus [4].
 

High impact information on Chromanol

  • Chromanol 293B, a specific IKs blocker, dose-dependently (1 to 100 micromol/L) prolonged the QT interval and action potential duration (APD90) of the 3 cell types but did not widen the T wave, increase TDR, or induce TdP [5].
  • As described for colonic epithelium, the current through KCNQ1 complexes in murine trachea is specifically inhibited by the chromanol 293B [6].
  • Chromanol 293B, an inhibitor of the cAMP-dependent KvLQT1 channel, attenuated the STA(2)-induced Cl- secretion in the human colonic mucosa (IC(50) value 1.18 microm) [7].
  • Prevention of APD(90) shortening by chromanol, a selective blocker of I(Ks), was seen in about 40% of myocytes due to short APD in our experimental conditions [8].
  • In non-CF tissues, Cl(-) secretion was significantly inhibited by the chromanol 293B (10 micromol/liter), a specific inhibitor of K(V)LQT1 K(+) channels [9].
 

Biological context of Chromanol

 

Anatomical context of Chromanol

 

Associations of Chromanol with other chemical compounds

  • 4. In ventricular myocytes, the same concentrations of chromanol 293B (10 microM), L-735,821 (100 nM) and E-4031 (1 microM) markedly or totally blocked I(Ks) and I(Kr), respectively [19].
  • The effect of the KCNQ channel blockers XE991, chromanol 293B and linopirdine, was studied on voltage-dependent K+ currents in smooth muscle cells dissociated freshly from mouse portal vein (mPV) and isometric tension recordings from whole mPV [20].
  • Cardiac action potential duration was prolonged by antagonists of either ERG1 (MK-499, cisapride) or KCNQ1/KCNE1 (chromanol 293B) [21].
  • We hypothesized that blockade of the increased slow IK (IKs) current during beta-adrenergic stimulation could improve action potential prolongation and tested this hypothesis by comparison of three different IK blockers: dofetilide, a selective blocker of IKr; ambasilide, a nonselective blocker of IK; and chromanol 293B, a selective blocker of IKs [22].
  • In this study, we generated a guinea pig LQT1 syndrome model using the IKs blocker chromanol 293B and then assayed the electrophysiologic effects of the ATP-sensitive potassium channel IK,ATP opener nicorandil on this model [23].
 

Gene context of Chromanol

  • Chromanol 293B, a blocker of the slow delayed rectifier K+ current (IKs), inhibits the CFTR Cl- current [24].
  • The KCNQ1 inhibitor chromanol 293B reversibly depressed IKvol with an IC50 of 26 microM [25].
  • The structurally related chromanol 293B (trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2,2-dimethyl-chromane), a blocker of the slow component of the delayed rectifier K+ current (IKs) in the heart, is also a weak inhibitor of KATP [24].
  • The chromanol, 293B (100 microM), reduced I(SC) by 74%, but charybdotoxin (CTX, 50 nM) had no effect [26].
  • Inhibition of IKs in guinea pig cardiac myocytes and guinea pig IsK channels by the chromanol 293B [27].
 

Analytical, diagnostic and therapeutic context of Chromanol

  • We have shown that the KCNQ1 inhibitor chromanol 293B significantly inhibited RVD-associated K(+) flux in isolated perfused rat liver and used patch-clamp techniques to define the signaling pathway linking swelling to I(KVol) activation [28].
  • The aim of this study was to determine the contribution of I (Ks) to repolarization in canine ventricular myocytes by measuring the frequency dependent action potential lengthening effect of 10 muM chromanol 293B using sharp microelectrodes [29].

References

  1. Theoretical possibilities for the development of novel antiarrhythmic drugs. Varró, A., Biliczki, P., Iost, N., Virág, L., Hála, O., Kovács, P., Mátyus, P., Papp, J.G. Current medicinal chemistry. (2004) [Pubmed]
  2. (3R,4S)-3-[4-(4-fluorophenyl)-4-hydroxypiperidin-1-yl]chroman-4,7-diol: a conformationally restricted analogue of the NR2B subtype-selective NMDA antagonist (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)- 1-propanol. Butler, T.W., Blake, J.F., Bordner, J., Butler, P., Chenard, B.L., Collins, M.A., DeCosta, D., Ducat, M.J., Eisenhard, M.E., Menniti, F.S., Pagnozzi, M.J., Sands, S.B., Segelstein, B.E., Volberg, W., White, W.F., Zhao, D. J. Med. Chem. (1998) [Pubmed]
  3. Synthesis of a phosphatidyl derivative of vitamin E and its antioxidant activity in phospholipid bilayers. Koga, T., Nagao, A., Terao, J., Sawada, K., Mukai, K. Lipids (1994) [Pubmed]
  4. Synthesis of a novel phosphate ester of a vitamin E derivative and its antioxidative activity. Miyamoto, S., Koga, T., Terao, J. Biosci. Biotechnol. Biochem. (1998) [Pubmed]
  5. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Shimizu, W., Antzelevitch, C. Circulation (1998) [Pubmed]
  6. The small conductance K+ channel, KCNQ1: expression, function, and subunit composition in murine trachea. Grahammer, F., Warth, R., Barhanin, J., Bleich, M., Hug, M.J. J. Biol. Chem. (2001) [Pubmed]
  7. Cyclic AMP-dependent Cl- secretion induced by thromboxane A2 in isolated human colon. Horikawa, N., Suzuki, T., Uchiumi, T., Minamimura, T., Tsukada, K., Takeguchi, N., Sakai, H. J. Physiol. (Lond.) (2005) [Pubmed]
  8. Ionic basis for membrane potential changes induced by hypoosmotic stress in guinea-pig ventricular myocytes. Kocic, I., Hirano, Y., Hiraoka, M. Cardiovasc. Res. (2001) [Pubmed]
  9. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia. Mall, M., Wissner, A., Schreiber, R., Kuehr, J., Seydewitz, H.H., Brandis, M., Greger, R., Kunzelmann, K. Am. J. Respir. Cell Mol. Biol. (2000) [Pubmed]
  10. Specific blockade of slowly activating I(sK) channels by chromanols -- impact on the role of I(sK) channels in epithelia. Suessbrich, H., Bleich, M., Ecke, D., Rizzo, M., Waldegger, S., Lang, F., Szabo, I., Lang, H.J., Kunzelmann, K., Greger, R., Busch, A.E. FEBS Lett. (1996) [Pubmed]
  11. The protection of bioenergetic functions in mitochondria by new synthetic chromanols. Staniek, K., Rosenau, T., Gregor, W., Nohl, H., Gille, L. Biochem. Pharmacol. (2005) [Pubmed]
  12. Antioxidant properties of natural and synthetic chromanol derivatives: study by fast kinetics and electron spin resonance spectroscopy. Gregor, W., Grabner, G., Adelwöhrer, C., Rosenau, T., Gille, L. J. Org. Chem. (2005) [Pubmed]
  13. Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Mall, M., Gonska, T., Thomas, J., Schreiber, R., Seydewitz, H.H., Kuehr, J., Brandis, M., Kunzelmann, K. Pediatr. Res. (2003) [Pubmed]
  14. Pharmacokinetics and metabolism of a cysteinyl leukotriene-1 receptor antagonist from the heterocyclic chromanol series in rats: in vitro-in vivo correlation, gender-related differences, isoform identification, and comparison with metabolism in human hepatic tissue. Kuperman, A.V., Kalgutkar, A.S., Marfat, A., Chambers, R.J., Liston, T.E. Drug Metab. Dispos. (2001) [Pubmed]
  15. Effects of the chromanol 293B, a selective blocker of the slow, component of the delayed rectifier K+ current, on repolarization in human and guinea pig ventricular myocytes. Bosch, R.F., Gaspo, R., Busch, A.E., Lang, H.J., Li, G.R., Nattel, S. Cardiovasc. Res. (1998) [Pubmed]
  16. The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. Varro, A., Baláti, B., Iost, N., Takács, J., Virág, L., Lathrop, D.A., Csaba, L., Tálosi, L., Papp, J.G. J. Physiol. (Lond.) (2000) [Pubmed]
  17. Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF. Fong, P., Argent, B.E., Guggino, W.B., Gray, M.A. Am. J. Physiol., Cell Physiol. (2003) [Pubmed]
  18. Blocking action of chromanol 293B on the slow component of delayed rectifier K(+) current in guinea-pig sino-atrial node cells. Ding, W.G., Toyoda, F., Matsuura, H. Br. J. Pharmacol. (2002) [Pubmed]
  19. Pharmacological block of the slow component of the outward delayed rectifier current (I(Ks)) fails to lengthen rabbit ventricular muscle QT(c) and action potential duration. Lengyel, C., Iost, N., Virág, L., Varró, A., Lathrop, D.A., Papp, J.G. Br. J. Pharmacol. (2001) [Pubmed]
  20. Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells. Yeung, S.Y., Greenwood, I.A. Br. J. Pharmacol. (2005) [Pubmed]
  21. Expression and coassociation of ERG1, KCNQ1, and KCNE1 potassium channel proteins in horse heart. Finley, M.R., Li, Y., Hua, F., Lillich, J., Mitchell, K.E., Ganta, S., Gilmour, R.F., Freeman, L.C. Am. J. Physiol. Heart Circ. Physiol. (2002) [Pubmed]
  22. Differential effect of beta-adrenergic stimulation on the frequency-dependent electrophysiologic actions of the new class III antiarrhythmics dofetilide, ambasilide, and chromanol 293B. Schreieck, J., Wang, Y., Gjini, V., Korth, M., Zrenner, B., Schömig, A., Schmitt, C. J. Cardiovasc. Electrophysiol. (1997) [Pubmed]
  23. Electrophysiologic effects of nicorandil on the guinea pig long QT1 syndrome model. Yang, Z., Shi, G., Li, C., Wang, H., Liu, K., Liu, Y. J. Cardiovasc. Electrophysiol. (2004) [Pubmed]
  24. Chromanol 293B, a blocker of the slow delayed rectifier K+ current (IKs), inhibits the CFTR Cl- current. Bachmann, A., Quast, U., Russ, U. Naunyn Schmiedebergs Arch. Pharmacol. (2001) [Pubmed]
  25. Electrophysiological and molecular identification of hepatocellular volume-activated K+ channels. Lan, W.Z., Abbas, H., Lemay, A.M., Briggs, M.M., Hill, C.E. Biochim. Biophys. Acta (2005) [Pubmed]
  26. Vasoactive intestinal peptide-stimulated Cl- secretion: activation of cAMP-dependent K+ channels. Izu, L.T., McCulle, S.L., Ferreri-Jacobia, M.T., Devor, D.C., Duffey, M.E. J. Membr. Biol. (2002) [Pubmed]
  27. Inhibition of IKs in guinea pig cardiac myocytes and guinea pig IsK channels by the chromanol 293B. Busch, A.E., Suessbrich, H., Waldegger, S., Sailer, E., Greger, R., Lang, H., Lang, F., Gibson, K.J., Maylie, J.G. Pflugers Arch. (1996) [Pubmed]
  28. Modulation of hepatocellular swelling-activated K+ currents by phosphoinositide pathway-dependent protein kinase C. Lan, W.Z., Wang, P.Y., Hill, C.E. Am. J. Physiol., Cell Physiol. (2006) [Pubmed]
  29. Contribution of I (Ks) to ventricular repolarization in canine myocytes. Horváth, B., Magyar, J., Szentandrássy, N., Birinyi, P., Nánási, P.P., Bányász, T. Pflugers Arch. (2006) [Pubmed]
 
WikiGenes - Universities