The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Kidney Tubules, Proximal

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Kidney Tubules, Proximal

 

High impact information on Kidney Tubules, Proximal

  • Thus, partial as opposed to complete inhibition of metabolism reveals that different relationships exist between net sodium transport and the transport of phosphate, glucose, and PAH by the proximal renal tubule [6].
  • Chloride transport in the proximal renal tubule [7].
  • We conclude that parathyroid hormone inhibits proximal renal tubule sodium-phosphate cotransport through a signaling complex dependent upon an AKAP [8].
  • Both DCXR and its mRNA are highly expressed in kidney and liver of human and rodent tissues, and the protein was localized primarily to the inner membranes of the proximal renal tubules in murine kidneys [9].
  • Previous studies have identified two high-molecular weight (280 and 330 kd) glycoproteins expressed by coated pits of the proximal renal tubule and yolk sac and have further established that, in vivo, antibodies to gp280 but not to gp330 induce fetal malformations [10].
  • The peptide transporter PEPT2 was cloned from the proximal kidney tubule cell line, LLC-PK1 [11].
 

Chemical compound and disease context of Kidney Tubules, Proximal

  • BACKGROUND: Cystinuria is the second most frequent autosomal recessively inherited disorder in Europe, and it is based on a disturbance of the transepithelial transport of cystine and amino acids in the proximal renal tubule as well as in the intestinum [12].
 

Biological context of Kidney Tubules, Proximal

 

Anatomical context of Kidney Tubules, Proximal

 

Associations of Kidney Tubules, Proximal with chemical compounds

 

Gene context of Kidney Tubules, Proximal

  • In conclusion, PTH activates MAPK in both distal and proximal renal tubule cells [28].
  • Calcitonin (CT), and PTH and PTH-related protein (PTHrP) stimulated urinary excretion of phosphate is brought about through inhibition of Na/P04 cotransport in proximal renal tubules [29].
  • Increased circulating levels of FGF23 have been reported in patients with renal phosphate-wasting disorders, but it is unclear whether FGF23 is the direct mediator responsible for the decreased phosphate transport at the proximal renal tubules and the altered vitamin D metabolism associated with these states [30].
  • Megalin is expressed in various epithelia including proximal kidney tubules, intestine, and ependymal cells [31].
  • These active vitamin D compounds also counteracted the effects of PTHrP at the proximal renal tubules, as reflected by a decrease in phosphate excretion [32].
 

Analytical, diagnostic and therapeutic context of Kidney Tubules, Proximal

 

References

  1. Progressive kidney degeneration in mice lacking tensin. Lo, S.H., Yu, Q.C., Degenstein, L., Chen, L.B., Fuchs, E. J. Cell Biol. (1997) [Pubmed]
  2. Renal toxicity and carcinogenicity of trichloroethylene: key results, mechanisms, and controversies. Brüning, T., Bolt, H.M. Crit. Rev. Toxicol. (2000) [Pubmed]
  3. Tubular basement membrane antibody-induced interstitial nephritis in systemic lupus erythematosus. Makker, S.P. Am. J. Med. (1980) [Pubmed]
  4. Apical heterodimeric cystine and cationic amino acid transporter expressed in MDCK cells. Bauch, C., Verrey, F. Am. J. Physiol. Renal Physiol. (2002) [Pubmed]
  5. Oral sodium bicarbonate reduces proximal renal tubular peptide catabolism, ammoniogenesis, and tubular damage in renal patients. Rustom, R., Grime, J.S., Costigan, M., Maltby, P., Hughes, A., Taylor, W., Shenkin, A., Critchley, M., Bone, J.M. Renal failure. (1998) [Pubmed]
  6. Inhibition of Renal Metabolism. Relative effects of arsenate on sodium, phosphate, and glucose transport by the rabbit proximal tubule. Brazy, P.C., Balaban, R.S., Gullans, S.R., Mandel, L.J., Dennis, V.W. J. Clin. Invest. (1980) [Pubmed]
  7. Chloride transport in the proximal renal tubule. Schild, L., Giebisch, G., Green, R. Annu. Rev. Physiol. (1988) [Pubmed]
  8. Parathyroid hormone regulation of type II sodium-phosphate cotransporters is dependent on an A kinase anchoring protein. Khundmiri, S.J., Rane, M.J., Lederer, E.D. J. Biol. Chem. (2003) [Pubmed]
  9. Molecular characterization of mammalian dicarbonyl/L-xylulose reductase and its localization in kidney. Nakagawa, J., Ishikura, S., Asami, J., Isaji, T., Usami, N., Hara, A., Sakurai, T., Tsuritani, K., Oda, K., Takahashi, M., Yoshimoto, M., Otsuka, N., Kitamura, K. J. Biol. Chem. (2002) [Pubmed]
  10. Antibodies to the 280-kd coated pit protein, target of teratogenic antibodies, produce alterations in the traffic of internalized proteins. Le Panse, S., Ayani, E., Mulliez, N., Chatelet, F., Cywiner-Golenzer, C., Galceran, M., Citadelle, D., Roux, C., Ronco, P., Verroust, P. Am. J. Pathol. (1994) [Pubmed]
  11. Cloning of the pig PEPT2 (pPEPT2) and characterization of the effects of epidermal growth factor (EGF) on pPEPT2-mediated peptide uptake in the renal porcine cell line LLC-PK1. Søndergaard, H.B., Bravo, S.A., Nielsen, C.U., Frokjaer, S., Brodin, B. Eur. J. Pharm. Sci. (2008) [Pubmed]
  12. Genomic and functional investigations of mutations of the SLC3A1 gene in cystinuria. Lahme, S., Bichler, K.H., Eggermann, T., Lang, F. Urologia internationalis. (2002) [Pubmed]
  13. Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. Roelofs, J.J., Rouschop, K.M., Leemans, J.C., Claessen, N., de Boer, A.M., Frederiks, W.M., Lijnen, H.R., Weening, J.J., Florquin, S. J. Am. Soc. Nephrol. (2006) [Pubmed]
  14. The role of reversible phosphorylation in the hormonal control of phenylalanine hydroxylase in isolated rat proximal kidney tubules. Richardson, S.C., Aspbury, R.A., Fisher, M.J. Biochem. J. (1993) [Pubmed]
  15. Kinetics of interactions of para-aminohippurate, probenecid, cysteine conjugates and N-acetyl cysteine conjugates with basolateral organic anion transporter in isolated rabbit proximal renal tubules. Dantzler, W.H., Evans, K.K., Wright, S.H. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  16. Evolutionary conflicts in pregnancy and calcium metabolism--a review. Haig, D. Placenta (2004) [Pubmed]
  17. Coupling between proximal tubular transport processes. Studies with ouabain, SITS and HCO3-free solutions. Ullrich, K.J., Capasso, G., Rumrich, G., Papavassiliou, F., Klöss, S. Pflugers Arch. (1977) [Pubmed]
  18. Glucose transporters. Elsas, L.J., Longo, N. Annu. Rev. Med. (1992) [Pubmed]
  19. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex. Williams, T.C., Doherty, A.J., Griffith, D.A., Jarvis, S.M. Biochem. J. (1989) [Pubmed]
  20. Parathyroid hormone degradation by chymotrypsin-like endopeptidase in the opossum kidney cell. Yamaguchi, T., Fukase, M., Nishikawa, M., Fujimi, T., Fujita, T. Endocrinology (1988) [Pubmed]
  21. Transport interactions of different organic cations during their excretion by the intact rat kidney. Pietruck, F., Ullrich, K.J. Kidney Int. (1995) [Pubmed]
  22. Identification of the type II Na(+)-Pi cotransporter (Npt2) in the osteoclast and the skeletal phenotype of Npt2-/- mice. Gupta, A., Tenenhouse, H.S., Hoag, H.M., Wang, D., Khadeer, M.A., Namba, N., Feng, X., Hruska, K.A. Bone (2001) [Pubmed]
  23. Detection of two forms of GP330. Their role in Heymann nephritis. Bachinsky, D.R., Zheng, G., Niles, J.L., McLaughlin, M., Abbate, M., Andres, G., Brown, D., McCluskey, R.T. Am. J. Pathol. (1993) [Pubmed]
  24. Dopamine regulates phosphate uptake by opossum kidney cells through multiple counter-regulatory receptors. Lederer, E.D., Sohi, S.S., McLeish, K.R. J. Am. Soc. Nephrol. (1998) [Pubmed]
  25. Hemangiopericytoma-induced osteomalacia: tumor transplantation in nude mice causes hypophosphatemia and tumor extracts inhibit renal 25-hydroxyvitamin D 1-hydroxylase activity. Miyauchi, A., Fukase, M., Tsutsumi, M., Fujita, T. J. Clin. Endocrinol. Metab. (1988) [Pubmed]
  26. Mechanisms underlying pressure-related natriuresis: the role of the renin-angiotensin and prostaglandin systems. State of the art lecture. Romero, J.C., Knox, F.G. Hypertension (1988) [Pubmed]
  27. Relationship between the transport and toxicity of cephalosporins in the kidney. Tune, B.M. J. Infect. Dis. (1975) [Pubmed]
  28. Obligate mitogen-activated protein kinase activation in parathyroid hormone stimulation of calcium transport but not calcium signaling. Sneddon, W.B., Liu, F., Gesek, F.A., Friedman, P.A. Endocrinology (2000) [Pubmed]
  29. Calcitonin inhibits phosphate uptake in opossum kidney cells stably transfected with a porcine calcitonin receptor. Muff, R., Kaufmann, M., Born, W., Fischer, J.A. Endocrinology (1994) [Pubmed]
  30. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Bai, X., Miao, D., Li, J., Goltzman, D., Karaplis, A.C. Endocrinology (2004) [Pubmed]
  31. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands. Gliemann, J. Biol. Chem. (1998) [Pubmed]
  32. 1,25-dihydroxyvitamin D3 as well as its analogue OCT lower blood calcium through inhibition of bone resorption in hypercalcemic rats with continuous parathyroid hormone-related peptide infusion. Endo, K., Katsumata, K., Hirata, M., Masaki, T., Kubodera, N., Nakamura, T., Ikeda, K., Ogata, E. J. Bone Miner. Res. (2000) [Pubmed]
  33. Renal catabolism of advanced glycation end products: the fate of pentosidine. Miyata, T., Ueda, Y., Horie, K., Nangaku, M., Tanaka, S., van Ypersele de Strihou, C., Kurokawa, K. Kidney Int. (1998) [Pubmed]
  34. Luminal kidney and intestine SLC6 amino acid transporters of B0AT-cluster and their tissue distribution in Mus musculus. Romeo, E., Dave, M.H., Bacic, D., Ristic, Z., Camargo, S.M., Loffing, J., Wagner, C.A., Verrey, F. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  35. Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Sueishi, K., Mishima, K., Makino, K., Itoh, Y., Tsuruya, K., Hirakata, H., Oishi, R. Eur. J. Pharmacol. (2002) [Pubmed]
  36. X-ray microanalysis and electron microscopy of platinum complex in the epithelium of proximal renal tubules of the cisplatin administered rabbits. Makita, T., Hakoi, K., Ohokawa, T. Cell Biol. Int. Rep. (1986) [Pubmed]
 
WikiGenes - Universities