The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

UQCRFS1  -  ubiquinol-cytochrome c reductase, Rieske...

Homo sapiens

Synonyms: Complex III subunit 5, Cytochrome b-c1 complex subunit 5, Cytochrome b-c1 complex subunit Rieske, mitochondrial, RIP1, RIS1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of UQCRFS1

 

High impact information on UQCRFS1

 

Chemical compound and disease context of UQCRFS1

 

Biological context of UQCRFS1

 

Anatomical context of UQCRFS1

  • RESULTS: We report the identification of a modified variant of the Rieske iron-sulfur protein, a component of the mitochondrial cytochrome bc1 complex, whose isoelectric point is shifted toward more alkaline values in the hippocampus of kindled rats [12].
  • 2D gel electrophoresis by blue-native-PAGE and SDS-PAGE showed that RISP existed as an apparent monomer in mitochondrial membranes in addition to forming a complex with ubiquinol-cytochrome c reductase [13].
  • Exogenous reactive oxygen species increased the plasma membrane Na,K-ATPase degradation, whereas, in mitochondrial DNA deficient rho(0) cells and in cells transfected with small interfering RNA against Rieske iron sulfur protein, the hypoxia-mediated Na,K-ATPase degradation was prevented [14].
 

Associations of UQCRFS1 with chemical compounds

  • Physicochemical aspects of the movement of the rieske iron sulfur protein during quinol oxidation by the bc(1) complex from mitochondria and photosynthetic bacteria [15].
  • Based on the atomic structures of the mitochondrial cytochrome bc(1) complex, it has been proposed that the soluble domain of the [2Fe-2S] Rieske iron-sulfur protein (ISP) must rotate by ca. 60 degrees and translate through an appreciable distance between two binding sites, proximal to cytochrome c(1) and to the lumen-side quinol binding site [16].
  • Several quinone inhibitors, all of which contain a halogen substituent and a bulky alkyl side chain, cause a shift in the EPR signal of the reduced Rieske iron-sulfur center from g = 1.90 to g = 1.94 [17].
  • Interaction of stigmatellin and DNP-INT with the Rieske iron-sulfur center of the chloroplast cytochrome b6-f complex [18].
  • In coenzyme Q-cycles, it is proposed that one electron from the quinol reduces the Rieske iron sulfur center (Em approximately 280 mV) and the remaining electron on the semiquinone reduces cytochrome br (Em approximately -60 mV) [19].
 

Physical interactions of UQCRFS1

 

Other interactions of UQCRFS1

  • Using RNAi to suppress expression of the Rieske iron-sulfur protein of complex III, hypoxia-induced HIF-1 alpha stabilization is attenuated, and ROS production, measured using a novel ROS-sensitive FRET probe, is decreased [21].
  • The reducing equivalents accepted and donated by the portion of the respiratory chain with half-reduction potentials greater than 200 mV are equal to those required for the known components (cytochrome a3 and the high-potential copper plus cytochrome a, 'visible copper', cytochrome c1, cytochrome c, and the Rieske iron-sulfur protein) [22].
  • Irrespectively, whether the fluidity of membrane lipids was elevated or decreased electron flow rates to the Rieske iron sulfur protein and to low potential cytochrome b were drastically reduced [23].
 

Analytical, diagnostic and therapeutic context of UQCRFS1

References

  1. Ubiquinol cytochrome c reductase (UQCRFS1) gene amplification in primary breast cancer core biopsy samples. Ohashi, Y., Kaneko, S.J., Cupples, T.E., Young, S.R. Gynecol. Oncol. (2004) [Pubmed]
  2. CA125 and UQCRFS1 FISH studies of ovarian carcinoma. Kaneko, S.J., Gerasimova, T., Smith, S.T., Lloyd, K.O., Suzumori, K., Young, S.R. Gynecol. Oncol. (2003) [Pubmed]
  3. Double minute chromosomes in acute myeloid leukemia and myelodysplastic syndrome: identification of new amplification regions by fluorescence in situ hybridization and spectral karyotyping. Sait, S.N., Qadir, M.U., Conroy, J.M., Matsui, S., Nowak, N.J., Baer, M.R. Genes Chromosomes Cancer (2002) [Pubmed]
  4. Identification of the components of a putative cytochrome bc1 complex in Rhodopseudomonas viridis. Wynn, R.M., Gaul, D.F., Shaw, R.W., Knaff, D.B. Arch. Biochem. Biophys. (1985) [Pubmed]
  5. Electrostatic destabilization of the cytochrome b6f complex in the thylakoid membrane. Szczepaniak, A., Huang, D., Keenan, T.W., Cramer, W.A. EMBO J. (1991) [Pubmed]
  6. Light-stimulated degradation of an unassembled Rieske FeS protein by a thylakoid-bound protease: the possible role of the FtsH protease. Ostersetzer, O., Adam, Z. Plant Cell (1997) [Pubmed]
  7. The electron-transport proteins of hydroxylating bacterial dioxygenases. Mason, J.R., Cammack, R. Annu. Rev. Microbiol. (1992) [Pubmed]
  8. Electron transfer from the Rieske iron-sulfur protein (ISP) to cytochrome f in vitro. Is a guided trajectory of the ISP necessary for competent docking? Soriano, G.M., Guo, L.W., De Vitry, C., Kallas, T., Cramer, W.A. J. Biol. Chem. (2002) [Pubmed]
  9. In vitro import of the Rieske iron-sulfur protein by trypanosome mitochondria. Priest, J.W., Hajduk, S.L. J. Biol. Chem. (1996) [Pubmed]
  10. Structure, sequence and location of the UQCRFS1 gene for the human Rieske Fe-S protein. Pennacchio, L.A., Bergmann, A., Fukushima, A., Okubo, K., Salemi, A., Lennon, G.G. Gene (1995) [Pubmed]
  11. Assignment of the gene (UQCRFS1) for the Rieske iron-sulfur protein subunit of the mitochondrial cytochrome bc1 complex to the 22q13 and 19q12-q13.1 regions of the human genome. Duncan, A.M., Anderson, L., Duff, C., Ozawa, T., Suzuki, H., Worton, R., Rozen, R. Genomics (1994) [Pubmed]
  12. Proteomic identification of the involvement of the mitochondrial rieske protein in epilepsy. Junker, H., Späte, K., Suofu, Y., Walther, R., Schwarz, G., Kammer, W., Nordheim, A., Walker, L.C., Runge, U., Kessler, C., Popa-Wagner, A. Epilepsia (2005) [Pubmed]
  13. Dephosphorylation of the Rieske iron-sulfur protein after induction of the mitochondrial permeability transition. He, L., Lemasters, J.J. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  14. Hypoxia-mediated degradation of Na,K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system. Comellas, A.P., Dada, L.A., Lecuona, E., Pesce, L.M., Chandel, N.S., Quesada, N., Budinger, G.R., Strous, G.J., Ciechanover, A., Sznajder, J.I. Circ. Res. (2006) [Pubmed]
  15. Physicochemical aspects of the movement of the rieske iron sulfur protein during quinol oxidation by the bc(1) complex from mitochondria and photosynthetic bacteria. Crofts, A.R., Hong, S., Zhang, Z., Berry, E.A. Biochemistry (1999) [Pubmed]
  16. Movement of the Rieske iron-sulfur protein in the p-side bulk aqueous phase: effect of lumenal viscosity on redox reactions of the cytochrome b6f complex. Heimann, S., Ponamarev, M.V., Cramer, W.A. Biochemistry (2000) [Pubmed]
  17. Interaction of photosynthetic electron transport inhibitors and the Rieske Iron-Sulfur center in chloroplasts and the cytochrome b6-f complex. Malkin, R. Biochemistry (1982) [Pubmed]
  18. Interaction of stigmatellin and DNP-INT with the Rieske iron-sulfur center of the chloroplast cytochrome b6-f complex. Malkin, R. FEBS Lett. (1986) [Pubmed]
  19. Thermodynamic and kinetic considerations of Q-cycle mechanisms and the oxidant-induced reduction of cytochromes b. Hendler, R.W., Bunow, B., Rieske, J.S. J. Bioenerg. Biomembr. (1985) [Pubmed]
  20. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Brunelle, J.K., Bell, E.L., Quesada, N.M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R.C., Chandel, N.S. Cell metabolism. (2005) [Pubmed]
  21. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Guzy, R.D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K.D., Simon, M.C., Hammerling, U., Schumacker, P.T. Cell metabolism. (2005) [Pubmed]
  22. Coulometric and potentiometric evaluation of the redox components of cytochrome c oxidase in situ. Wilson, D.F., Nelson, D. Biochim. Biophys. Acta (1982) [Pubmed]
  23. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Gille, L., Nohl, H. Arch. Biochem. Biophys. (2001) [Pubmed]
  24. Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod. Willett, C.S., Burton, R.S. Mol. Biol. Evol. (2004) [Pubmed]
  25. Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Ní Chadhain, S.M., Norman, R.S., Pesce, K.V., Kukor, J.J., Zylstra, G.J. Appl. Environ. Microbiol. (2006) [Pubmed]
  26. Evidence for a cytochrome f-Rieske protein subcomplex in the cytochrome b6f system from spinach chloroplasts. el-Demerdash, M., Salnikow, J., Vater, J. Arch. Biochem. Biophys. (1988) [Pubmed]
 
WikiGenes - Universities