The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

HHO1  -  histone H1

Saccharomyces cerevisiae S288c

Synonyms: Histone H1, LPI17C, YPL127C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of HHO1

  • Their removal in vitro allowed expression of the gene, designated PfPK5, in Escherichia coli, the resulting product having kinase activity against casein and histone H1 [1].
  • In addition, comparison of the different inhibitory patterns obtained using histone H1 or GST (glutathione S-transferase)-pRb (retinoblastoma protein) fusion protein as substrate (the latter of which recognizes both the docking site and the catalytic site of Cdk2-cyclin A) offers interesting suggestions for the inhibitory mechanism of Sic1 [2].
 

High impact information on HHO1

 

Biological context of HHO1

  • We also considered the possibility that HHO1 was involved in forming the heterochromatin at telomeres [8].
  • Thus, the yeast histone H1-like gene appears to have no role in gene activation at a distance or in silencing under the conditions tested [8].
  • Sequencing of the yeast genome has led to the identification of a putative histone H1 gene [9].
  • Thus, our data demonstrate that removal of yeast histone H1 only results in decreased gene expression [9].
  • Histone H1 expressed in Saccharomyces cerevisiae binds to chromatin and affects survival, growth, transcription, and plasmid stability but does not change nucleosomal spacing [10].
 

Anatomical context of HHO1

 

Associations of HHO1 with chemical compounds

 

Regulatory relationships of HHO1

  • To test these hypotheses, a gene coding for a sea urchin histone H1 was expressed from the inducible GAL1 promoter in Saccharomyces cerevisiae by use of a YEp vector for high expression levels (strain YCL7) and a centromere vector for low expression levels (strain YCL1) [10].
  • The subunits of histone H1 kinase have now been shown to be cyclins and the p34CDC2 kinase product of the cell cycle control gene CDC2 [21].
  • In vitro histone H1 kinase assays and anti-phosphotyrosine Western Blotting confirmed the in vivo activating dephosphorylation of starfish CDK1-cyclinB by recombinant O. tauri Cdc25 [22].
 

Other interactions of HHO1

  • Overexpression of a heterologous histone H1 from sea urchin showed an overall inhibition of gene activation by the GAL1 promoter, whereas overexpression of the yeast histone H1 had no effect [8].
  • Also, the expression of A1, ALPHA2 or SUC2 genes, all of which are known to be responsive to an altered chromatin structure, was unchanged in HHO1 knockout or HHO1-overexpressing strains when compared to wild-type cells [8].
  • Cln2 immunoprecipitated from cdc28-csr1 cells was completely defective in histone H1 kinase activity, due to defects in Cdc28 binding and activation by Cln2 [23].
  • TPK2-HA-wt phosphorylated a peptide from Histone H1, proving that TPK2 is a functional kinase [24].
 

Analytical, diagnostic and therapeutic context of HHO1

References

  1. Isolation and expression of a gene specifying a cdc2-like protein kinase from the human malaria parasite Plasmodium falciparum. Ross-Macdonald, P.B., Graeser, R., Kappes, B., Franklin, R., Williamson, D.H. Eur. J. Biochem. (1994) [Pubmed]
  2. The yeast cyclin-dependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain. Barberis, M., De Gioia, L., Ruzzene, M., Sarno, S., Coccetti, P., Fantucci, P., Vanoni, M., Alberghina, L. Biochem. J. (2005) [Pubmed]
  3. Dephosphorylation and activation of Xenopus p34cdc2 protein kinase during the cell cycle. Gautier, J., Matsukawa, T., Nurse, P., Maller, J. Nature (1989) [Pubmed]
  4. Requirement of Saccharomyces cerevisiae Ras for completion of mitosis. Morishita, T., Mitsuzawa, H., Nakafuku, M., Nakamura, S., Hattori, S., Anraku, Y. Science (1995) [Pubmed]
  5. The Cdk-associated protein Cks1 functions both in G1 and G2 in Saccharomyces cerevisiae. Tang, Y., Reed, S.I. Genes Dev. (1993) [Pubmed]
  6. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P., Reinberg, D. Mol. Cell (2004) [Pubmed]
  7. Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Downs, J.A., Kosmidou, E., Morgan, A., Jackson, S.P. Mol. Cell (2003) [Pubmed]
  8. Gene activation at a distance and telomeric silencing are not affected by yeast histone H1. Escher, D., Schaffner, W. Mol. Gen. Genet. (1997) [Pubmed]
  9. Decreased expression of specific genes in yeast cells lacking histone H1. Hellauer, K., Sirard, E., Turcotte, B. J. Biol. Chem. (2001) [Pubmed]
  10. Histone H1 expressed in Saccharomyces cerevisiae binds to chromatin and affects survival, growth, transcription, and plasmid stability but does not change nucleosomal spacing. Linder, C., Thoma, F. Mol. Cell. Biol. (1994) [Pubmed]
  11. Requirement for p34cdc2 kinase is restricted to mitosis in the mammalian cdc2 mutant FT210. Hamaguchi, J.R., Tobey, R.A., Pines, J., Crissman, H.A., Hunter, T., Bradbury, E.M. J. Cell Biol. (1992) [Pubmed]
  12. A cdc2-like kinase phosphorylates histone H1 in the amitotic macronucleus of Tetrahymena. Roth, S.Y., Collini, M.P., Draetta, G., Beach, D., Allis, C.D. EMBO J. (1991) [Pubmed]
  13. Cell cycle in the fucus zygote parallels a somatic cell cycle but displays a unique translational regulation of cyclin-dependent kinases. Corellou, F., Brownlee, C., Detivaud, L., Kloareg, B., Bouget, F.Y. Plant Cell (2001) [Pubmed]
  14. A brief staurosporine treatment of mitotic cells triggers premature exit from mitosis and polyploid cell formation. Hall, L.L., Th'ng, J.P., Guo, X.W., Teplitz, R.L., Bradbury, E.M. Cancer Res. (1996) [Pubmed]
  15. Molecular characterization of Ste20p, a potential mitogen-activated protein or extracellular signal-regulated kinase kinase (MEK) kinase kinase from Saccharomyces cerevisiae. Wu, C., Whiteway, M., Thomas, D.Y., Leberer, E. J. Biol. Chem. (1995) [Pubmed]
  16. DNA metabolism gene CDC7 from yeast encodes a serine (threonine) protein kinase. Hollingsworth, R.E., Sclafani, R.A. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  17. G1 cyclin-dependent activation of p34CDC28 (Cdc28p) in vitro. Deshaies, R.J., Kirschner, M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  18. A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Umeda, M., Bhalerao, R.P., Schell, J., Uchimiya, H., Koncz, C. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  19. Interferon-gamma activation of a mitogen-activated protein kinase, KFR1, in the bloodstream form of Trypanosoma brucei. Hua, S.B., Wang, C.C. J. Biol. Chem. (1997) [Pubmed]
  20. The crk3 gene of Leishmania mexicana encodes a stage-regulated cdc2-related histone H1 kinase that associates with p12. Grant, K.M., Hassan, P., Anderson, J.S., Mottram, J.C. J. Biol. Chem. (1998) [Pubmed]
  21. Reversible histone modifications and the chromosome cell cycle. Bradbury, E.M. Bioessays (1992) [Pubmed]
  22. The first green lineage cdc25 dual-specificity phosphatase. Khadaroo, B., Robbens, S., Ferraz, C., Derelle, E., Eychenié, S., Cooke, R., Peaucellier, G., Delseny, M., Demaille, J., Van de Peer, Y., Picard, A., Moreau, H. Cell Cycle (2004) [Pubmed]
  23. Isolation and characterization of new alleles of the cyclin-dependent kinase gene CDC28 with cyclin-specific functional and biochemical defects. Levine, K., Oehlen, L.J., Cross, F.R. Mol. Cell. Biol. (1998) [Pubmed]
  24. Cyclin-dependent kinase TPK2 is a critical cell cycle regulator in Toxoplasma gondii. Khan, F., Tang, J., Qin, C.L., Kim, K. Mol. Microbiol. (2002) [Pubmed]
  25. Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin. Freidkin, I., Katcoff, D.J. Nucleic Acids Res. (2001) [Pubmed]
  26. A delay in the Saccharomyces cerevisiae cell cycle that is induced by a dicentric chromosome and dependent upon mitotic checkpoints. Neff, M.W., Burke, D.J. Mol. Cell. Biol. (1992) [Pubmed]
 
WikiGenes - Universities