The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

KRIT1  -  KRIT1, ankyrin repeat containing

Homo sapiens

Synonyms: CAM, CCM1, Cerebral cavernous malformations 1 protein, Krev interaction trapped 1, Krev interaction trapped protein 1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of KRIT1


Psychiatry related information on KRIT1


High impact information on KRIT1


Biological context of KRIT1

  • As the function of the KRIT1 protein and its role in CCM pathogenesis remain unknown, we performed yeast two-hybrid screens to identify additional protein binding partners [9].
  • These data also raise the possibility that KRIT1 plays a part in the formation of endothelial cell junctions and expression of a mature vascular phenotype [10].
  • BLAST analysis revealed that conceptual translation of a fragment of human genomic DNA upstream of the 5' end of the reported KRIT1 coding sequence predicts extension of the human open reading frame by 207 codons with 95% amino acid identity between the novel putative human and murine amino termini [11].
  • Altogether these data suggest that KRIT1 mRNA decay due to the presence of premature stop codons and Krit1 haploinsufficiency may be the underlying mechanism of CCM [12].
  • Our finding suggests a SNX17 involvement in the indicated KRIT1 function in cell adhesion processes by integrin signaling [13].

Anatomical context of KRIT1

  • Loss-of-function KRIT1 mutations, as observed in CCM1, would shift the balance with predicted consequences for endothelial cell performance during integrin beta1-dependent angiogenesis [14].
  • The interaction between ICAP-1 and KRIT1, and the presence of a FERM domain in the latter, suggest that KRIT1 might be involved in the bidirectional signaling between integrin molecules and the cytoskeleton [9].
  • OBJECTIVE: Mutations in KRIT1 cause familial cerebral cavernous malformation, an autosomal dominant disorder affecting primarily the central nervous system vasculature [15].
  • KRIT1 antibody fails to stain fenestrated capillaries in the kidney, the liver, or the red pulp of the spleen, where endothelial cells do not to adhere to one another [15].
  • RESULTS: Immunostaining demonstrates that although KRIT1 is expressed in a broad variety of human organs, it localizes to the vascular endothelium of each, specifically to capillaries and arterioles [15].

Associations of KRIT1 with chemical compounds


Physical interactions of KRIT1


Regulatory relationships of KRIT1

  • Small interfering RNA-mediated depletion of KRIT-1 blocked the ability of Rap1 to stabilize endothelial junctions associated with increased actin stress fibers [20].

Other interactions of KRIT1


Analytical, diagnostic and therapeutic context of KRIT1


  1. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Laberge-le Couteulx, S., Jung, H.H., Labauge, P., Houtteville, J.P., Lescoat, C., Cecillon, M., Marechal, E., Joutel, A., Bach, J.F., Tournier-Lasserve, E. Nat. Genet. (1999) [Pubmed]
  2. KRIT1, a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated protein. Gunel, M., Laurans, M.S., Shin, D., DiLuna, M.L., Voorhees, J., Choate, K., Nelson-Williams, C., Lifton, R.P. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  3. Quantitative assay of deletion or duplication genotype by capillary electrophoresis system: application in prader-willi syndrome and duchenne muscular dystrophy. Hung, C.C., Chen, C.P., Lin, S.P., Chien, S.C., Lee, C.N., Cheng, W.F., Hsieh, W.S., Liu, M.S., Su, Y.N., Lin, W.L. Clin. Chem. (2006) [Pubmed]
  4. Vertebral hemangiomas associated with familial cerebral cavernous malformation: segmental disease expression. Case report. Clatterbuck, R.E., Cohen, B., Gailloud, P., Murphy, K., Rigamonti, D. J. Neurosurg. (2002) [Pubmed]
  5. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Liquori, C.L., Berg, M.J., Siegel, A.M., Huang, E., Zawistowski, J.S., Stoffer, T., Verlaan, D., Balogun, F., Hughes, L., Leedom, T.P., Plummer, N.W., Cannella, M., Maglione, V., Squitieri, F., Johnson, E.W., Rouleau, G.A., Ptacek, L., Marchuk, D.A. Am. J. Hum. Genet. (2003) [Pubmed]
  6. Surgical decision-making on cerebral cavernous malformations. Chang, H.S., Hongo, K., Nakagawa, H., Tsuge, T. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. (2001) [Pubmed]
  7. Deletions in CCM2 Are a Common Cause of Cerebral Cavernous Malformations. Liquori, C.L., Berg, M.J., Squitieri, F., Leedom, T.P., Ptacek, L., Johnson, E.W., Marchuk, D.A. Am. J. Hum. Genet. (2007) [Pubmed]
  8. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Bergametti, F., Denier, C., Labauge, P., Arnoult, M., Boetto, S., Clanet, M., Coubes, P., Echenne, B., Ibrahim, R., Irthum, B., Jacquet, G., Lonjon, M., Moreau, J.J., Neau, J.P., Parker, F., Tremoulet, M., Tournier-Lasserve, E. Am. J. Hum. Genet. (2005) [Pubmed]
  9. KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Zawistowski, J.S., Serebriiskii, I.G., Lee, M.F., Golemis, E.A., Marchuk, D.A. Hum. Mol. Genet. (2002) [Pubmed]
  10. Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations. Clatterbuck, R.E., Eberhart, C.G., Crain, B.J., Rigamonti, D. J. Neurol. Neurosurg. Psychiatr. (2001) [Pubmed]
  11. Cloning of the murine Krit1 cDNA reveals novel mammalian 5' coding exons. Zhang, J., Clatterbuck, R.E., Rigamonti, D., Dietz, H.C. Genomics (2000) [Pubmed]
  12. Spectrum and expression analysis of KRIT1 mutations in 121 consecutive and unrelated patients with Cerebral Cavernous Malformations. Cavé-Riant, F., Denier, C., Labauge, P., Cécillon, M., Maciazek, J., Joutel, A., Laberge-Le Couteulx, S., Tournier-Lasserve, E. Eur. J. Hum. Genet. (2002) [Pubmed]
  13. Sorting nexin 17, a non-self-assembling and a PtdIns(3)P high class affinity protein, interacts with the cerebral cavernous malformation related protein KRIT1. Czubayko, M., Knauth, P., Schlüter, T., Florian, V., Bohnensack, R. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  14. Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Zhang, J., Clatterbuck, R.E., Rigamonti, D., Chang, D.D., Dietz, H.C. Hum. Mol. Genet. (2001) [Pubmed]
  15. KRIT1/cerebral cavernous malformation 1 protein localizes to vascular endothelium, astrocytes, and pyramidal cells of the adult human cerebral cortex. Guzeloglu-Kayisli, O., Amankulor, N.M., Voorhees, J., Luleci, G., Lifton, R.P., Gunel, M. Neurosurgery (2004) [Pubmed]
  16. Mutations in KRIT1 in familial cerebral cavernous malformations. Zhang, J., Clatterbuck, R.E., Rigamonti, D., Dietz, H.C. Neurosurgery (2000) [Pubmed]
  17. A Splice-Site Mutation in CCM1/KRIT1 is Associated with Retinal and Cerebral Cavernous Hemangioma. Kitzmann, A.S., Pulido, J.S., Ferber, M.J., Highsmith, W.E., Babovic-Vuksanovic, D. Ophthalmic Genet. (2006) [Pubmed]
  18. Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Miura, K., Yamano, T., Yoshioka, S., Kohinata, T., Inoue, Y., Taniguchi, F., Asamizu, E., Nakamura, Y., Tabata, S., Yamato, K.T., Ohyama, K., Fukuzawa, H. Plant Physiol. (2004) [Pubmed]
  19. Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22. Serebriiskii, I., Estojak, J., Sonoda, G., Testa, J.R., Golemis, E.A. Oncogene (1997) [Pubmed]
  20. KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. Glading, A., Han, J., Stockton, R.A., Ginsberg, M.H. J. Cell Biol. (2007) [Pubmed]
  21. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Sahoo, T., Johnson, E.W., Thomas, J.W., Kuehl, P.M., Jones, T.L., Dokken, C.G., Touchman, J.W., Gallione, C.J., Lee-Lin, S.Q., Kosofsky, B., Kurth, J.H., Louis, D.N., Mettler, G., Morrison, L., Gil-Nagel, A., Rich, S.S., Zabramski, J.M., Boguski, M.S., Green, E.D., Marchuk, D.A. Hum. Mol. Genet. (1999) [Pubmed]
  22. Spectrum of genotype and clinical manifestations in cerebral cavernous malformations. Gault, J., Sain, S., Hu, L.J., Awad, I.A. Neurosurgery (2006) [Pubmed]
  23. CCM2 expression parallels that of CCM1. Seker, A., Pricola, K.L., Guclu, B., Ozturk, A.K., Louvi, A., Gunel, M. Stroke (2006) [Pubmed]
  24. Linkage to the CCM2 locus and genetic heterogeneity in familial cerebral cavernous malformation. Dupré, N., Verlaan, D.J., Hand, C.K., Laurent, S.B., Turecki, G., Davenport, W.J., Acciarri, N., Dichgans, J., Ohkuma, A., Siegel, A.M., Rouleau, G.A. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques. (2003) [Pubmed]
  25. Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Liquori, C.L., Berg, M.J., Squitieri, F., Ottenbacher, M., Sorlie, M., Leedom, T.P., Cannella, M., Maglione, V., Ptacek, L., Johnson, E.W., Marchuk, D.A. Hum. Mutat. (2006) [Pubmed]
WikiGenes - Universities