The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ECs4128  -  acetyl-CoA carboxylase biotin carboxylase...

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ECs4128

 

High impact information on ECs4128

 

Chemical compound and disease context of ECs4128

 

Biological context of ECs4128

 

Anatomical context of ECs4128

  • This enzyme in plants is localized in plastids and is believed to be composed of biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase made up of alpha and beta polypeptides, although the enzyme has not been purified yet [15].
  • Superimposition of Calcofluor white with immunofluorescence labeling, analysed by optical microscopy, indicated that ACC oxidase is located at the cell wall in the pericarp of breaker tomato and climacteric apple (Malus x domestica Borkh.) fruit [16].
 

Associations of ECs4128 with chemical compounds

  • Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains [17].
  • 1-Aminocyclopropane-1-carboxylate synthase (ACC synthase, EC 4.4.1. 14) catalyzes the rate-limiting step in the ethylene biosynthetic pathway in plants [18].
  • We propose a different mechanism in which the iron serves instead to simultaneously bind ACC and O2, thereby fixing their relative orientations and promoting electron transfer between them to initiate catalysis [7].
  • In vivo studies using the ACC cDNA as probe showed that the ACC synthase gene is induced by a diverse group of inducers, including wounding, Li+ ions, and the plant hormone auxin [13].
  • Codons ending in uracil or adenine, especially ACU, predominate over ACC and ACG [19].
 

Analytical, diagnostic and therapeutic context of ECs4128

References

  1. Is dimerization required for the catalytic activity of bacterial biotin carboxylase? Shen, Y., Chou, C.Y., Chang, G.G., Tong, L. Mol. Cell (2006) [Pubmed]
  2. Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.). Zarembinski, T.I., Theologis, A. Mol. Biol. Cell (1993) [Pubmed]
  3. Organization and nucleotide sequences of the genes encoding the biotin carboxyl carrier protein and biotin carboxylase protein of Pseudomonas aeruginosa acetyl coenzyme A carboxylase. Best, E.A., Knauf, V.C. J. Bacteriol. (1993) [Pubmed]
  4. The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis. Marini, P., Li, S.J., Gardiol, D., Cronan, J.E., de Mendoza, D. J. Bacteriol. (1995) [Pubmed]
  5. Molecular characterization of Lactobacillus plantarum genes for beta-ketoacyl-acyl carrier protein synthase III (fabH) and acetyl coenzyme A carboxylase (accBCDA), which are essential for fatty acid biosynthesis. Kiatpapan, P., Kobayashi, H., Sakaguchi, M., Ono, H., Yamashita, M., Kaneko, Y., Murooka, Y. Appl. Environ. Microbiol. (2001) [Pubmed]
  6. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product. Shen, Y., Volrath, S.L., Weatherly, S.C., Elich, T.D., Tong, L. Mol. Cell (2004) [Pubmed]
  7. Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Rocklin, A.M., Tierney, D.L., Kofman, V., Brunhuber, N.M., Hoffman, B.M., Christoffersen, R.E., Reich, N.O., Lipscomb, J.D., Que, L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  8. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin. Blanchard, C.Z., Chapman-Smith, A., Wallace, J.C., Waldrop, G.L. J. Biol. Chem. (1999) [Pubmed]
  9. Kinetic characterization of mutations found in propionic acidemia and methylcrotonylglycinuria: evidence for cooperativity in biotin carboxylase. Sloane, V., Waldrop, G.L. J. Biol. Chem. (2004) [Pubmed]
  10. Distribution of cross-links between mRNA analogues and 16 S rRNA in Escherichia coli 70 S ribosomes made under equilibrium conditions and their response to tRNA binding. Juzumiene, D.I., Shapkina, T.G., Wollenzien, P. J. Biol. Chem. (1995) [Pubmed]
  11. Identification of lysine-238 of Escherichia coli biotin carboxylase as an ATP-binding residue. Kazuta, Y., Tokunaga, E., Aramaki, E., Kondo, H. FEBS Lett. (1998) [Pubmed]
  12. ATPase activity of biotin carboxylase provides evidence for initial activation of HCO3- by ATP in the carboxylation of biotin. Climent, I., Rubio, V. Arch. Biochem. Biophys. (1986) [Pubmed]
  13. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Sato, T., Theologis, A. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  14. Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Kondo, H., Shiratsuchi, K., Yoshimoto, T., Masuda, T., Kitazono, A., Tsuru, D., Anai, M., Sekiguchi, M., Tanabe, T. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  15. Recombinant carboxyltransferase responsive to redox of pea plastidic acetyl-CoA carboxylase. Kozaki, A., Kamada, K., Nagano, Y., Iguchi, H., Sasaki, Y. J. Biol. Chem. (2000) [Pubmed]
  16. Immunocytolocalization of 1-aminocyclopropane-1-carboxylic acid oxidase in tomato and apple fruit. Rombaldi, C., Lelièvre, J.M., Latché, A., Petitprez, M., Bouzayen, M., Pech, J.C. Planta (1994) [Pubmed]
  17. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains. Song, J., Wurtele, E.S., Nikolau, B.J. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  18. Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: a key enzyme in ethylene biosynthesis. Tarun, A.S., Lee, J.S., Theologis, A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  19. Occurrence of unmodified adenine and uracil at the first position of anticodon in threonine tRNAs in Mycoplasma capricolum. Andachi, Y., Yamao, F., Iwami, M., Muto, A., Osawa, S. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  20. Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Van der Straeten, D., Van Wiemeersch, L., Goodman, H.M., Van Montagu, M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  21. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis. Sloane, V., Blanchard, C.Z., Guillot, F., Waldrop, G.L. J. Biol. Chem. (2001) [Pubmed]
  22. The biotin carboxylase-biotin carboxyl carrier protein complex of Escherichia coli acetyl-CoA carboxylase. Choi-Rhee, E., Cronan, J.E. J. Biol. Chem. (2003) [Pubmed]
  23. Function of Escherichia coli biotin carboxylase requires catalytic activity of both subunits of the homodimer. Janiyani, K., Bordelon, T., Waldrop, G.L., Cronan, J.E. J. Biol. Chem. (2001) [Pubmed]
  24. Preliminary X-ray crystallographic analysis of biotin carboxylase isolated from Escherichia coli. Waldrop, G., Holden, H.M., Rayment, I. J. Mol. Biol. (1994) [Pubmed]
 
WikiGenes - Universities