The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

THIOURIDINE     1-[(2R,3R,4S,5R)-3,4- dihydroxy-5...

Synonyms: AC1MHUF8, CHEBI:20480, CTK4C1864, LS-187054, LS-187666, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of THIOURIDINE


High impact information on THIOURIDINE

  • To probe their interactions within the active center of the mammalian spliceosome, substrates containing a single photoactivatable 4-thiouridine residue adjacent to either splice site were synthesized, and crosslinks were induced during the course of in vitro splicing [6].
  • Selective photoactivation of the 4-thiouridine residue after incubation of either substrate under splicing conditions in HeLa nuclear extract resulted in cross-links to the U5 snRNA and the U5 snRNP protein p220 [7].
  • To unravel the region of human eukaryotic release factor 1 (eRF1) that is close to stop codons within the ribosome, we used mRNAs containing a single photoactivatable 4-thiouridine (s(4)U) residue in the first position of stop or control sense codons [8].
  • Precursor RNAs containing 4-thiouridine at specific sites were used with UV-crosslinking to map the binding sites of the yeast protein splicing factor PRP8 [9].
  • We report the selective reduction of the 5,6 double bond of 4-thiouridine at position 8 in Escherichia coli tyrosine tRNA, so as to prevent formation of the presumed covalent enzyme-nucleic acid adduct [10].

Chemical compound and disease context of THIOURIDINE


Biological context of THIOURIDINE

  • A comparison of the respective rotational correlation time (tau c) values of three differently located spin labels, indicates that upon aminoacylation of tRNAPhe, the 4-thiouridine residue region and the miniloop region become more flexible, while the environment of the anticodon loop is not affected [16].
  • Substrate specificity for 4-thiouridine modification in Escherichia coli [17].
  • The interaction between mRNA and Escherichia coli ribosomes has been studied by photochemical cross-linking using mRNA analogues that contain 4-thiouridine (s4U) or s4U modified with azidophenylacyl bromide (APAB), either two nucleotides upstream or eight nucleotides downstream from the nucleotide sequence ACC, the codon for tRNA(Thr) [18].
  • In addition, preliminary thermal denaturation studies of tRNAf(Met), monitoring 4-thiouridine emission and energy transfer to Tb3+, indicate an unexplained melting phenomenon near 25 degrees C in the presence of Mg2+ [19].
  • The photobinding kinetics for 8MOP-tRNA showed an apparent induction period or sigmoidal kinetic curve, indicating a specific initial photobinding site on tRNA which was identified as 4-thiouridine at position 8 from the 5'-end of Escherichia coli tRNA [20].

Anatomical context of THIOURIDINE


Associations of THIOURIDINE with other chemical compounds


Gene context of THIOURIDINE

  • Roles of the relA(+) gene and of 4-thiouridine in near-ultraviolet (344 nm) radiation inhibition of induced synthesis of tryptophanase in Escherichia coli B/r [29].
  • We previously found that the iscS gene, a member of the nifS cysteine desulfurase gene family, is required for 4-thiouridine biosynthesis in E. coli [30].
  • Furthermore, crosslinking of thiouridine-labeled BiP IRES-containing RNA to cellular proteins identified the specific binding of two proteins, p60 and p95, to the 3'half of the BiP 5'NCR [31].
  • Analysis of RNA pulse-labeled with thiouridine followed by purification of the thiol-labeled RNA using mercurated agarose indicated that GH probably acts by increasing IGF-I transcription [32].
  • Five species of tRNAfMet labeled with a single fluorophore are prepared to analyze the conformational changes at the 3'-end, at dihydrouridine, and at thiouridine in tRNAfMet upon binding of methionyl-tRNA synthetase [33].

Analytical, diagnostic and therapeutic context of THIOURIDINE


  1. Near ultraviolet DNA damage induces the SOS responses in Escherichia coli. Caldeira de Araujo, A., Favre, A. EMBO J. (1986) [Pubmed]
  2. Site-specific crosslinking of 4-thiouridine-modified human tRNA(3Lys) to reverse transcriptase from human immunodeficiency virus type I. Mishima, Y., Steitz, J.A. EMBO J. (1995) [Pubmed]
  3. Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells. Czyzyk-Krzeska, M.F., Furnari, B.A., Lawson, E.E., Millhorn, D.E. J. Biol. Chem. (1994) [Pubmed]
  4. Binding interactions between yeast tRNA ligase and a precursor transfer ribonucleic acid containing two photoreactive uridine analogues. Tanner, N.K., Hanna, M.M., Abelson, J. Biochemistry (1988) [Pubmed]
  5. Examination of the folding pathway of the antigenomic hepatitis delta virus ribozyme reveals key interactions of the L3 loop. Reymond, C., Ouellet, J., Bisaillon, M., Perreault, J.P. RNA (2007) [Pubmed]
  6. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Sontheimer, E.J., Steitz, J.A. Science (1993) [Pubmed]
  7. Site-specific cross-linking of mammalian U5 snRNP to the 5' splice site before the first step of pre-mRNA splicing. Wyatt, J.R., Sontheimer, E.J., Steitz, J.A. Genes Dev. (1992) [Pubmed]
  8. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome. Chavatte, L., Seit-Nebi, A., Dubovaya, V., Favre, A. EMBO J. (2002) [Pubmed]
  9. Extensive interactions of PRP8 protein with the 5' and 3' splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. Teigelkamp, S., Newman, A.J., Beggs, J.D. EMBO J. (1995) [Pubmed]
  10. Covalent enzyme-RNA complex: a tRNA modification that prevents a covalent enzyme interaction also prevents aminoacylation. Starzyk, R., Schoemaker, H., Schimmel, P. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  11. Tetrakis(acetoxymercuri)methane: a polymetallic reagent for labeling sulfur in nucleic acids. Strothkamp, K.G., Lehmann, J., Lippard, S.J. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  12. The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. Lauhon, C.T., Kambampati, R. J. Biol. Chem. (2000) [Pubmed]
  13. Introduction of antigenic determining 2,4-dinitrophenyl residues into 4-thiouridine, N3-(3-L-amino-3-carboxypropyl) uridine and tRNA-Phe from E. coli. Seela, F., Hansske, F., Watanabe, K., Cramer, F. Nucleic Acids Res. (1977) [Pubmed]
  14. Covalent coupling of 4-thiouridine in the initiator methionine tRNA to specific lysine residues in Escherichia coli methionyl-tRNA synthetase. Leon, O., Schulman, L.H. Biochemistry (1987) [Pubmed]
  15. Pattern of 4-thiouridine-induced cross-linking in 16S ribosomal RNA in the Escherichia coli 30S subunit. Nanda, K., Wollenzien, P. Biochemistry (2004) [Pubmed]
  16. Evidence for a conformational change in tRNAPhe upon aminoacylation. Caron, M., Brisson, N., Dugas, H. J. Biol. Chem. (1976) [Pubmed]
  17. Substrate specificity for 4-thiouridine modification in Escherichia coli. Lauhon, C.T., Erwin, W.M., Ton, G.N. J. Biol. Chem. (2004) [Pubmed]
  18. Distribution of cross-links between mRNA analogues and 16 S rRNA in Escherichia coli 70 S ribosomes made under equilibrium conditions and their response to tRNA binding. Juzumiene, D.I., Shapkina, T.G., Wollenzien, P. J. Biol. Chem. (1995) [Pubmed]
  19. Lanthanide fluorescence studies of transfer RNAf(met) conformation. Pavlick, D., Formoso, C. Biochemistry (1978) [Pubmed]
  20. Photobinding of 8-methoxypsoralen to transfer RNA and 5-fluorouracil-enriched transfer RNA. Ou, C.N., Song, P.S. Biochemistry (1978) [Pubmed]
  21. Male germ cells regulate transcription of the cathepsin l gene by rat Sertoli cells. Zabludoff, S.D., Charron, M., DeCerbo, J.N., Simukova, N., Wright, W.W. Endocrinology (2001) [Pubmed]
  22. A 100-kD complex of two RNA-binding proteins from mitochondria of Leishmania tarentolae catalyzes RNA annealing and interacts with several RNA editing components. Aphasizhev, R., Aphasizheva, I., Nelson, R.E., Simpson, L. RNA (2003) [Pubmed]
  23. Pharmacodynamic basis for the interaction of cimetidine with the bone marrow stem cells (CFUS). Byron, J.W. Exp. Hematol. (1980) [Pubmed]
  24. Effects of uridine, isomatitol and 4-thiouridine on in vitro cell adhesion and in vivo effects of 4-thiouridine in a lung inflammation model. Uppugunduri, S., Gautam, C. Int. Immunopharmacol. (2004) [Pubmed]
  25. New RNA-protein crosslinks in domains 1 and 2 of E. coli 30S ribosomal subunits obtained by means of an intrinsic photoaffinity probe. Hajnsdorf, E., Favre, A., Expert-Bezançon, A. Nucleic Acids Res. (1989) [Pubmed]
  26. Regulation of tyrosine hydroxylase gene transcription rate and tyrosine hydroxylase mRNA stability by cyclic AMP and glucocorticoid. Fossom, L.H., Sterling, C.R., Tank, A.W. Mol. Pharmacol. (1992) [Pubmed]
  27. Three conserved guanosines approach the reaction site in native and minimal hammerhead ribozymes. Lambert, D., Heckman, J.E., Burke, J.M. Biochemistry (2006) [Pubmed]
  28. Thermodynamics of RNA-RNA duplexes with 2- or 4-thiouridines: implications for antisense design and targeting a group I intron. Testa, S.M., Disney, M.D., Turner, D.H., Kierzek, R. Biochemistry (1999) [Pubmed]
  29. Roles of the relA(+) gene and of 4-thiouridine in near-ultraviolet (344 nm) radiation inhibition of induced synthesis of tryptophanase in Escherichia coli B/r. Sharma, R.C., Wingo, R.J., Jagger, J. Photochem. Photobiol. (1981) [Pubmed]
  30. Requirement for IscS in biosynthesis of all thionucleosides in Escherichia coli. Lauhon, C.T. J. Bacteriol. (2002) [Pubmed]
  31. Location of the internal ribosome entry site in the 5' non-coding region of the immunoglobulin heavy-chain binding protein (BiP) mRNA: evidence for specific RNA-protein interactions. Yang, Q., Sarnow, P. Nucleic Acids Res. (1997) [Pubmed]
  32. Expression of insulin-like growth factor I in cultured rat hepatocytes: effects of insulin and growth hormone. Johnson, T.R., Blossey, B.K., Denko, C.W., Ilan, J. Mol. Endocrinol. (1989) [Pubmed]
  33. Methionyl-tRNA synthetase induced 3'-terminal and delocalized conformational transition in tRNAfMet: steady-state fluorescence of tRNA with a single fluorophore. Ferguson, B.Q., Yang, D.C. Biochemistry (1986) [Pubmed]
  34. The environment of 5S rRNA in the ribosome: cross-links to 23S rRNA from sites within helices II and III of the 5S molecule. Osswald, M., Brimacombe, R. Nucleic Acids Res. (1999) [Pubmed]
  35. Time-resolved absorption, circular dichroism, and emission of tRNA. Evidence that the photo-cross-linking of 4-thiouridine in tRNA occurs from the triplet state. Milder, S.J., Weiss, P.S., Kliger, D.S. Biochemistry (1989) [Pubmed]
  36. Agonist and cyclic AMP-mediated regulation of beta 1-adrenergic receptor mRNA and gene transcription in rat C6 glioma cells. Hosoda, K., Feussner, G.K., Rydelek-Fitzgerald, L., Fishman, P.H., Duman, R.S. J. Neurochem. (1994) [Pubmed]
  37. High-molecular-weight forms of aminoacyl-tRNA synthetases and tRNA modification enzymes in Escherichia coli. Harris, C.L. J. Bacteriol. (1990) [Pubmed]
WikiGenes - Universities