The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

alkA  -  3-methyl-adenine DNA glycosylase II

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK2062, JW2053, aidA
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of alkA

  • Expression of the ada and alkA genes, both of which are involved in the adaptive response of Escherichia coli to alkylating agents, is positively controlled by Ada protein, the product of the ada gene [1].
  • The results show a clear relationship between the levels of N3-methyladenine and toxicity in an alkA/tag glycosylase mutant that cannot remove the adduct from its genome [2].
  • Bacillus subtilis alkA gene encoding inducible 3-methyladenine DNA glycosylase is adjacent to the ada operon [3].
 

High impact information on alkA

  • The cloned ada and alkA genes and purified Ada protein have been used in cell-free systems to identify the inducing signal [4].
  • The derived APDG protein sequence of 253 amino acids and the 3-meAde-DNA glycosylase II of E. coli coded for by the alkA gene have regions of conserved sequences [5].
  • We described previously the isolation of a Saccharomyces cerevisiae 3-methyladenine (3-MeAde) DNA glycosylase repair gene (MAG) by its expression in glycosylase-deficient Escherichia coli alkA tag mutant cells and its ability to rescue these cells from the toxic effects of alkylating agents [6].
  • Here we extend this cross-species functional complementation approach to the isolation of a full-length human 3-MeAde DNA glycosylase cDNA that rescues alkA tag E. coli from killing by methyl methanesulfonate, and we have mapped the gene to human chromosome 16 [6].
  • A region of the Ada DNA-repair protein required for the activation of ada transcription is not necessary for activation of alkA [7].
 

Chemical compound and disease context of alkA

 

Biological context of alkA

 

Associations of alkA with chemical compounds

 

Regulatory relationships of alkA

  • These results suggest that the mechanism by which Ada activates ada transcription differs from that by which it activates alkA transcription [7].
 

Other interactions of alkA

  • Furthermore, the sensitivity and the spontaneous mutation rate observed in the double mutant alkA- uvrA- are almost identical to those of the uvrA- mutant [16].
  • Thus, both aidA and aidB share with adaptive response a common regulatory mechanism involving the ada gene [17].
  • Cells deleted for the polA (DNA polymerase I) or priA (primosome) genes are as sensitive to MMS and MNNG as alkA tag bacteria [18].
 

Analytical, diagnostic and therapeutic context of alkA

References

  1. Regulatory mechanisms for induction of synthesis of repair enzymes in response to alkylating agents: ada protein acts as a transcriptional regulator. Nakabeppu, Y., Sekiguchi, M. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  2. Evidence in Escherichia coli that N3-methyladenine lesions and cytotoxicity induced by a minor groove binding methyl sulfonate ester can be modulated in vivo by netropsin. Shah, D., Gold, B. Biochemistry (2003) [Pubmed]
  3. Bacillus subtilis alkA gene encoding inducible 3-methyladenine DNA glycosylase is adjacent to the ada operon. Morohoshi, F., Hayashi, K., Munkata, N. J. Bacteriol. (1993) [Pubmed]
  4. The intracellular signal for induction of resistance to alkylating agents in E. coli. Teo, I., Sedgwick, B., Kilpatrick, M.W., McCarthy, T.V., Lindahl, T. Cell (1986) [Pubmed]
  5. Isolation and structure of a cDNA expressing a mammalian 3-methyladenine-DNA glycosylase. O'Connor, T.R., Laval, F. EMBO J. (1990) [Pubmed]
  6. Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16. Samson, L., Derfler, B., Boosalis, M., Call, K. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  7. A region of the Ada DNA-repair protein required for the activation of ada transcription is not necessary for activation of alkA. Shevell, D.E., Walker, G.C. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  8. Cloning and characterization of the alkA gene of Escherichia coli that encodes 3-methyladenine DNA glycosylase II. Nakabeppu, Y., Kondo, H., Sekiguchi, M. J. Biol. Chem. (1984) [Pubmed]
  9. Crystallization and preliminary X-ray diffraction studies of 3-methyladenine-DNA glycosylase II from Escherichia coli. Yamagata, Y., Odawara, K., Tomita, K., Nakabeppu, Y., Sekiguchi, M. J. Mol. Biol. (1988) [Pubmed]
  10. Alkylating agents induce UVM, a recA-independent inducible mutagenic phenomenon in Escherichia coli. Wang, G., Palejwala, V.A., Dunman, P.M., Aviv, D.H., Murphy, H.S., Rahman, M.S., Humayun, M.Z. Genetics (1995) [Pubmed]
  11. Mutagenesis and repair of DNA damage caused by nitrogen mustard, N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU), streptozotocin, and mitomycin C in E. coli. Fram, R.J., Sullivan, J., Marinus, M.G. Mutat. Res. (1986) [Pubmed]
  12. Structure and expression of the alkA gene of Escherichia coli involved in adaptive response to alkylating agents. Nakabeppu, Y., Miyata, T., Kondo, H., Iwanaga, S., Sekiguchi, M. J. Biol. Chem. (1984) [Pubmed]
  13. DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli. Bjelland, S., Birkeland, N.K., Benneche, T., Volden, G., Seeberg, E. J. Biol. Chem. (1994) [Pubmed]
  14. Functional sites of the Ada regulatory protein of Escherichia coli. Analysis by amino acid substitutions. Takano, K., Nakabeppu, Y., Sekiguchi, M. J. Mol. Biol. (1988) [Pubmed]
  15. Gene expression caused by alkylating agents and cis-diamminedichloroplatinum(II) in Escherichia coli. Fram, R.J., Crockett, J., Volkert, M.R. Cancer Res. (1988) [Pubmed]
  16. Effects of nitrous acid treatment on the survival and mutagenesis of Escherichia coli cells lacking base excision repair (hypoxanthine-DNA glycosylase-ALK A protein) and/or nucleotide excision repair. Sidorkina, O., Saparbaev, M., Laval, J. Mutagenesis (1997) [Pubmed]
  17. Induction of specific Escherichia coli genes by sublethal treatments with alkylating agents. Volkert, M.R., Nguyen, D.C. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  18. Homologous recombination prevents methylation-induced toxicity in Escherichia coli. Nowosielska, A., Smith, S.A., Engelward, B.P., Marinus, M.G. Nucleic Acids Res. (2006) [Pubmed]
 
WikiGenes - Universities