The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

ZINC00403086     3-methyl-7H-purin-6-amine

Synonyms: FT-0671432, AC1L9L8I, 3mag, 2x6f, 3MA, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ADK


High impact information on ADK


Chemical compound and disease context of ADK


Biological context of ADK


Anatomical context of ADK


Associations of ADK with other chemical compounds


Gene context of ADK

  • MGT1 transcript levels are not increased in response to DNA alkylation damage, nor is the MGT1 MTase involved in the regulation of the yeast 3-methyladenine DNA glycosylase gene (MAG) [27].
  • Comparison of the mutator activity produced by Mag1, which has a broad substrate range, with that produced by the E. coli Tag 3MeA DNA glycosylase, which has a narrow substrate range, indicates that the removal of endogenously produced 3MeA is unlikely to be responsible for the mutator effect of Mag1 [28].
  • Moreover, changing the ratios of the MAG 3-methyladenine DNA glycosylase and the APN1 AP endonuclease had profound effects on spontaneous mutation rates [29].
  • Treatment of cells with a specific inhibitor of autophagy (3-methyladenine) attenuated localization of LC3 to autophagosomes but exacerbated cytosolic release of cytochrome c as well as apoptotic cell death as revealed by analysis of subdiploid fraction and cytoplasmic histone-associated DNA fragmentation [30].
  • Taking advantage of overproduction of the alkA protein in adapted cells that harbor multicopy plasmids carrying the alkA+ gene, 3-methyladenine DNA glycosylase II has been purified to apparent physical homogeneity [31].

Analytical, diagnostic and therapeutic context of ADK


  1. Three-dimensional structure of a DNA repair enzyme, 3-methyladenine DNA glycosylase II, from Escherichia coli. Yamagata, Y., Kato, M., Odawara, K., Tokuno, Y., Nakashima, Y., Matsushima, N., Yasumura, K., Tomita, K., Ihara, K., Fujii, Y., Nakabeppu, Y., Sekiguchi, M., Fujii, S. Cell (1996) [Pubmed]
  2. The adaptive imbalance in base excision-repair enzymes generates microsatellite instability in chronic inflammation. Hofseth, L.J., Khan, M.A., Ambrose, M., Nikolayeva, O., Xu-Welliver, M., Kartalou, M., Hussain, S.P., Roth, R.B., Zhou, X., Mechanic, L.E., Zurer, I., Rotter, V., Samson, L.D., Harris, C.C. J. Clin. Invest. (2003) [Pubmed]
  3. Structure of the human 3-methyladenine DNA glycosylase gene and localization close to the 16p telomere. Vickers, M.A., Vyas, P., Harris, P.C., Simmons, D.L., Higgs, D.R. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  4. Comparison of virus reactivation, DNA base damage, and cell cycle effects in autologous human melanoma cells resistant to methylating agents. Hayward, I.P., Parsons, P.G. Cancer Res. (1984) [Pubmed]
  5. A novel 3-methyladenine DNA glycosylase from helicobacter pylori defines a new class within the endonuclease III family of base excision repair glycosylases. O'Rourke, E.J., Chevalier, C., Boiteux, S., Labigne, A., Ielpi, L., Radicella, J.P. J. Biol. Chem. (2000) [Pubmed]
  6. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Lau, A.Y., Schärer, O.D., Samson, L., Verdine, G.L., Ellenberger, T. Cell (1998) [Pubmed]
  7. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. Espert, L., Denizot, M., Grimaldi, M., Robert-Hebmann, V., Gay, B., Varbanov, M., Codogno, P., Biard-Piechaczyk, M. J. Clin. Invest. (2006) [Pubmed]
  8. Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing. Engelward, B.P., Dreslin, A., Christensen, J., Huszar, D., Kurahara, C., Samson, L. EMBO J. (1996) [Pubmed]
  9. The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. Rabouille, C., Strous, G.J., Crapo, J.D., Geuze, H.J., Slot, J.W. J. Cell Biol. (1993) [Pubmed]
  10. Cloning of a 3-methyladenine-DNA glycosylase from Arabidopsis thaliana. Santerre, A., Britt, A.B. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  11. Release of N2,3-ethenoguanine from chloroacetaldehyde-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Matijasevic, Z., Sekiguchi, M., Ludlum, D.B. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  12. Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II). Masaoka, A., Terato, H., Kobayashi, M., Honsho, A., Ohyama, Y., Ide, H. J. Biol. Chem. (1999) [Pubmed]
  13. The Bacillus subtilis counterpart of the mammalian 3-methyladenine DNA glycosylase has hypoxanthine and 1,N6-ethenoadenine as preferred substrates. Aamodt, R.M., Falnes, P.Ø., Johansen, R.F., Seeberg, E., Bjørås, M. J. Biol. Chem. (2004) [Pubmed]
  14. 3-Methyladenine residues in DNA induce the SOS function sfiA in Escherichia coli. Boiteux, S., Huisman, O., Laval, J. EMBO J. (1984) [Pubmed]
  15. Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16. Samson, L., Derfler, B., Boosalis, M., Call, K. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  16. From the Cover: Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Checroun, C., Wehrly, T.D., Fischer, E.R., Hayes, S.F., Celli, J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  17. Expression of the E.coli 3-methyladenine DNA glycosylase I gene in mammalian cells reduces the toxic and mutagenic effects of methylating agents. Klungland, A., Fairbairn, L., Watson, A.J., Margison, G.P., Seeberg, E. EMBO J. (1992) [Pubmed]
  18. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Seglen, P.O., Gordon, P.B. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  19. The ubiquitin-activating enzyme, E1, is required for stress-induced lysosomal degradation of cellular proteins. Gropper, R., Brandt, R.A., Elias, S., Bearer, C.F., Mayer, A., Schwartz, A.L., Ciechanover, A. J. Biol. Chem. (1991) [Pubmed]
  20. Effects of intracellular amino acid concentrations, cyclic AMP, and dexamethasone on lysosomal proteolysis in primary cultures of perinatal rat hepatocytes. Blommaart, P.J., Zonneveld, D., Meijer, A.J., Lamers, W.H. J. Biol. Chem. (1993) [Pubmed]
  21. Biosynthesis, processing, and targeting of sphingolipid activator protein (SAP )precursor in cultured human fibroblasts. Mannose 6-phosphate receptor-independent endocytosis of SAP precursor. Vielhaber, G., Hurwitz, R., Sandhoff, K. J. Biol. Chem. (1996) [Pubmed]
  22. All four known cyclic adducts formed in DNA by the vinyl chloride metabolite chloroacetaldehyde are released by a human DNA glycosylase. Dosanjh, M.K., Chenna, A., Kim, E., Fraenkel-Conrat, H., Samson, L., Singer, B. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  23. DNA glycosylase recognition and catalysis. Fromme, J.C., Banerjee, A., Verdine, G.L. Curr. Opin. Struct. Biol. (2004) [Pubmed]
  24. Urinary excretion of nitrate, N-nitrosoproline, 3-methyladenine, and 7-methylguanine in a Colombian population at high risk for stomach cancer. Stillwell, W.G., Glogowski, J., Xu, H.X., Wishnok, J.S., Zavala, D., Montes, G., Correa, P., Tannenbaum, S.R. Cancer Res. (1991) [Pubmed]
  25. Interaction of the carcinogen 3,3-dimethyl-1-phenyltriazene with nucleic acids of various rat tissues and the effect of a protein-free diet. Kleihues, P., Kolar, G.F., Margison, G.P. Cancer Res. (1976) [Pubmed]
  26. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Kanzawa, T., Germano, I.M., Komata, T., Ito, H., Kondo, Y., Kondo, S. Cell Death Differ. (2004) [Pubmed]
  27. Primary sequence and biological functions of a Saccharomyces cerevisiae O6-methylguanine/O4-methylthymine DNA repair methyltransferase gene. Xiao, W., Derfler, B., Chen, J., Samson, L. EMBO J. (1991) [Pubmed]
  28. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Glassner, B.J., Rasmussen, L.J., Najarian, M.T., Posnick, L.M., Samson, L.D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  29. In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Xiao, W., Samson, L. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  30. Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Herman-Antosiewicz, A., Johnson, D.E., Singh, S.V. Cancer Res. (2006) [Pubmed]
  31. Cloning and characterization of the alkA gene of Escherichia coli that encodes 3-methyladenine DNA glycosylase II. Nakabeppu, Y., Kondo, H., Sekiguchi, M. J. Biol. Chem. (1984) [Pubmed]
  32. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. Rydberg, B., Lindahl, T. EMBO J. (1982) [Pubmed]
  33. Purification and characterization of 3-methyladenine DNA glycosylase I from Escherichia coli. Bjelland, S., Seeberg, E. Nucleic Acids Res. (1987) [Pubmed]
  34. Developmental analysis of the Hba(th-J) mouse mutation: effects on mouse peri-implantation development and identification of two candidate genes. Hendrey, J., Lin, D., Dziadek, M. Dev. Biol. (1995) [Pubmed]
  35. Induction of the DNA repair enzymes uracil DNA glycosylase and 3-methyladenine DNA glycosylase in regenerating rat liver. Gombar, C.T., Katz, E.J., Magee, P.N., Sirover, M.A. Carcinogenesis (1981) [Pubmed]
WikiGenes - Universities