The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Pdc  -  phosducin

Rattus norvegicus

Synonyms: 33 kDa phototransducing protein, 33DPTP, MEKA, PHD, Phosducin, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pdc

  • These data thus confirm and extend the findings of previous work that local trophic interactions are important in regulating rod photoreceptor degeneration in retinitis pigmentosa [1].
  • Immunization with PDC(R)65-96 (amino acid residues 65 through 96 derived from rat phosducin) at doses of 0.83 nmol or more induced severe experimental autoimmune uveitis (EAU) in all rats within 12 days [2].
  • Viral vectors based on the nonpathogenic human adeno-associated virus, when coupled with the strong, rod photoreceptor specific opsin promoter, offer an efficient and nontoxic way to deliver and express ribozymes in photoreceptor cells for long time periods of time [3].
  • Low dark-adapted, scotopic retinal and visual sensitivity in retinopathy of prematurity (ROP) could be due to disease of the inner retina, or the recently described rod photoreceptor abnormalities [4].

High impact information on Pdc


Biological context of Pdc

  • Rat phosducin also contains three potential phosphorylation domains for protein kinase C and nine for casein kinase II as well as a predicted site for N-glycosylation [9].
  • The product of one of these genes has extensive sequence homology to phosducin, a phosphoprotein expressed in retina and pineal gland that modulates trimeric guanine nucleotide-binding protein (G protein) function by binding to G-protein beta gamma subunits [10].
  • The IC50 value of PhLP in the latter assay was 89 nM, whereas phosducin caused half-maximal inhibition at 17 nM [11].
  • We identified from a rat brain cDNA library an isolate encoding the phosducin-like protein (PhLP), which has 41% identity and 65% amino acid homology to phosducin [10].
  • By manipulating cell density in serum-free cultures we show that rat rod photoreceptor development requires a diffusible activity produced by neonatal retinal cells [12].

Anatomical context of Pdc


Associations of Pdc with chemical compounds

  • These results provide evidence for three activities, one of which is taurine, that are candidate regulators of rod photoreceptor development in vivo [17].
  • The purified receptor was then reconstituted into lipid vesicles, and its ability to activate either transducin, the rod photoreceptor-specific GTP-binding protein, or the alpha subunit of Go was assayed in vitro using a guanosine 5'-3-O-(thio)triphosphate binding assay [18].
  • In addition, total (dephosphorylated) MEKA was observed to increase after a 6-h treatment with norepinephrine or (Bu)2 cAMP, an effect which was dependent upon new protein synthesis [19].
  • Retinoic acid promotes rod photoreceptor differentiation in rat retina in vivo [20].
  • In contrast, the low insulin dose which reduced serum glucose approximately 30% elicited a significant adrenocortical response only in the intact or PHD groups but failed to stimulate this response in animals with CHD or AHD [21].

Regulatory relationships of Pdc


Other interactions of Pdc


Analytical, diagnostic and therapeutic context of Pdc


  1. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa. Streichert, L.C., Birnbach, C.D., Reh, T.A. J. Neurobiol. (1999) [Pubmed]
  2. Characterization of a potent uveitopathogenic site derived from rat phosducin. Abe, T., Satoh, N., Nakajima, A., Koizumi, T., Tamada, M., Sakuragi, S. Exp. Eye Res. (1997) [Pubmed]
  3. Ribozyme gene therapy for autosomal dominant retinal disease. Hauswirth, W.W., LaVail, M.M., Flannery, J.G., Lewin, A.S. Clin. Chem. Lab. Med. (2000) [Pubmed]
  4. Background adaptation in a rat model of retinopathy of prematurity. Jiang, J.C., Hansen, R.M., Reynaud, X., Fulton, A.B. Documenta ophthalmologica. Advances in ophthalmology. (2002) [Pubmed]
  5. A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin. Gaudet, R., Savage, J.R., McLaughlin, J.N., Willardson, B.M., Sigler, P.B. Mol. Cell (1999) [Pubmed]
  6. Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Watanabe, T., Raff, M.C. Neuron (1990) [Pubmed]
  7. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Ooto, S., Akagi, T., Kageyama, R., Akita, J., Mandai, M., Honda, Y., Takahashi, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  8. An isoform of the rod photoreceptor cyclic nucleotide-gated channel beta subunit expressed in olfactory neurons. Sautter, A., Zong, X., Hofmann, F., Biel, M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. Rat pineal gland phosducin: cDNA isolation, nucleotide sequence, and chromosomal assignment in the mouse. Craft, C.M., Lolley, R.N., Seldin, M.F., Lee, R.H. Genomics (1991) [Pubmed]
  10. Phosducin-like protein: an ethanol-responsive potential modulator of guanine nucleotide-binding protein function. Miles, M.F., Barhite, S., Sganga, M., Elliott, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  11. Inhibition of G-protein betagamma-subunit functions by phosducin-like protein. Schröder, S., Lohse, M.J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  12. A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Altshuler, D., Cepko, C. Development (1992) [Pubmed]
  13. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse. Sokolov, M., Strissel, K.J., Leskov, I.B., Michaud, N.A., Govardovskii, V.I., Arshavsky, V.Y. J. Biol. Chem. (2004) [Pubmed]
  14. Rat hippocampal neurons express genes for both rod retinal and olfactory cyclic nucleotide-gated channels: novel targets for cAMP/cGMP function. Kingston, P.A., Zufall, F., Barnstable, C.J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  15. Ligands of steroid/thyroid receptors induce cone photoreceptors in vertebrate retina. Kelley, M.W., Turner, J.K., Reh, T.A. Development (1995) [Pubmed]
  16. Developmental expression of laminin beta 2 in rat retina. Further support for a role in rod morphogenesis. Libby, R.T., Hunter, D.D., Brunken, W.J. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  17. Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Altshuler, D., Lo Turco, J.J., Rush, J., Cepko, C. Development (1993) [Pubmed]
  18. Functional coupling of a human retinal metabotropic glutamate receptor (hmGluR6) to bovine rod transducin and rat Go in an in vitro reconstitution system. Weng, K., Lu, C., Daggett, L.P., Kuhn, R., Flor, P.J., Johnson, E.C., Robinson, P.R. J. Biol. Chem. (1997) [Pubmed]
  19. Photoneural control of the synthesis and phosphorylation of pineal MEKA (phosducin). Schaad, N.C., Shinohara, T., Abe, T., Klein, D.C. Endocrinology (1991) [Pubmed]
  20. Retinoic acid promotes rod photoreceptor differentiation in rat retina in vivo. Kelley, M.W., Williams, R.C., Turner, J.K., Creech-Kraft, J.M., Reh, T.A. Neuroreport (1999) [Pubmed]
  21. ACTH and corticosterone secretion following insulin in intact and in variously hypothalamic deafferented male rats. Weidenfeld, J., Siegel, R.A., Feldman, S., Conforti, N., Chowers, I. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1982) [Pubmed]
  22. Ciliary neurotrophic factor blocks rod photoreceptor differentiation from postmitotic precursor cells in vitro. Kirsch, M., Schulz-Key, S., Wiese, A., Fuhrmann, S., Hofmann, H. Cell Tissue Res. (1998) [Pubmed]
  23. Involvement of Mash1 in EGF-mediated regulation of differentiation in the vertebrate retina. Ahmad, I., Dooley, C.M., Afiat, S. Dev. Biol. (1998) [Pubmed]
  24. Role of the isoprenyl pocket of the G protein beta gamma subunit complex in the binding of phosducin and phosducin-like protein. Lukov, G.L., Myung, C.S., McIntire, W.E., Shao, J., Zimmerman, S.S., Garrison, J.C., Willardson, B.M. Biochemistry (2004) [Pubmed]
  25. P23H and S334ter opsin mutations: Increasing photoreceptor outer segment n-3 fatty acid content does not affect the course of retinal degeneration. Martin, R.E., Ranchon-Cole, I., Brush, R.S., Williamson, C.R., Hopkins, S.A., Li, F., Anderson, R.E. Mol. Vis. (2004) [Pubmed]
  26. Phosducin, beta-arrestin and opioid receptor migration. Schulz, R., Wehmeyer, A., Murphy, J., Schulz, K. Eur. J. Pharmacol. (1999) [Pubmed]
  27. Age-related oxidative damage in Long-Evans rat retina. Ohia, S.E., Bagchi, M., Stohs, S.J. Res. Commun. Mol. Pathol. Pharmacol. (1994) [Pubmed]
  28. Gating by cyclic GMP and voltage in the alpha subunit of the cyclic GMP-gated channel from rod photoreceptors. Benndorf, K., Koopmann, R., Eismann, E., Kaupp, U.B. J. Gen. Physiol. (1999) [Pubmed]
  29. Subcellular localization of phosducin in rod photoreceptors. Chen, J., Yoshida, T., Nakano, K., Bitensky, M.W. Vis. Neurosci. (2005) [Pubmed]
  30. Possible role of the Müller cell in uptake and metabolism of glutamate in the mammalian outer retina. Derouiche, A. Vision Res. (1996) [Pubmed]
  31. Analysis of uveitogenic sites in phosducin molecule. Satoh, N., Abe, T., Nakajima, A., Ohkoshi, M., Koizumi, T., Tamada, H., Sakuragi, S. Curr. Eye Res. (1998) [Pubmed]
WikiGenes - Universities