The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Viperidae

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Viperidae

  • The lethal toxicity of Crotalus durissus terrificus (Crotalinae, Viperidae) can be attributed mainly to the presence of a neurotoxic protein, crotoxin, which also shows phospholipase A2 activity [1].
  • Cerastes cerastes venom in low concentrations (0.8-2.5 micrograms/ml) inhibited the response of the rat vas deferens to field stimulation, while higher concentrations (4-8 micrograms/ml) causes a contracture that was reversed by washing and transiently blocked by phentolamine [2].
 

Psychiatry related information on Viperidae

 

High impact information on Viperidae

  • We have purified bitiscetin from Bitis arietans venom and investigated the mechanism whereby it promotes a form of vWF that is reactive with platelets [4].
  • The disintegrin-like domains of these toxins differ from the disintegrin peptides found in crotalid and viperid venoms by the nature of their different disulfide bond structure and, in lieu of the disintegrins' signature Arg-Gly-Asp (RGD) integrin binding sequence, there is an XXCD disulfide-bonded cysteinyl sequence in that region [5].
  • Characterization and platelet inhibitory activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of the viper Bitis arietans [6].
  • The digestion and absorption of collagen, native and artificially cross-linked, has been examined in the rat and the Gaboon viper, by feeding known quantities and measuring the hydroxy-proline content of the faeces and of the contents of the gut at different levels, and comparing with an unabsorbable marker (polyethylene glycol) [7].
  • In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event [8].
 

Biological context of Viperidae

 

Anatomical context of Viperidae

 

Associations of Viperidae with chemical compounds

  • The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only [8].
  • The venoms of Viperidae snakes contain numerous serine proteinases that have been recognized to possess one or more of the essential activities of thrombin on fibrinogen and platelets [16].
  • A comparison of the sequences of these crotalid neurotoxins revealed some common features of the possible neurotoxic sites, including residues 6, 11, 76-81 and 119-125 [17].
  • In several myotoxins from the venoms of Viperidae snakes, this aspartic acid is substituted by lysine [18].
  • The sequence is highly similar to those of high-molecular mass snake venom metalloproteinases from viperid and crotalid venoms comprised of metalloproteinase, disintegrin-like, and Cys-rich domains [19].
 

Gene context of Viperidae

  • Crotalid venom vascular endothelial growth factors has preferential affinity for VEGFR-1. Characterization of Protobothrops mucrosquamatus venom VEGF [20].
  • Structural comparison among VEGF-proteins from various viper venoms revealed that the two subfamilies of vipers (Crotalinae and Viperinae) have evolved with distinct receptor-specificities for VEGFR-1 and VEGFR-2, respectively [20].
  • Bitiscetin, a platelet adhesion inducer isolated from venom of the snake Bitis arietans, activates the binding of the von Willebrand factor (VWF) A1 domain to glycoprotein Ib (GPIb) in vitro [21].
  • The homology with other crotalid PLA2 cited in the literature varied from 60% to 90% [22].
  • Kallikrein-like proteinase from bushmaster snake venom [23].
 

Analytical, diagnostic and therapeutic context of Viperidae

References

  1. Purification and properties of an antivenom factor from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Fortes-Dias, C.L., Fonseca, B.C., Kochva, E., Diniz, C.R. Toxicon (1991) [Pubmed]
  2. Effect of the venom of the snake Cerastes cerastes (African desert horned viper) on the response of the rat vas deferens to field stimulation. Tilmisany, A.K., Najjar, T.A. Toxicon (1982) [Pubmed]
  3. Annual cycle of plasma testosterone in male copperheads, Agkistrodon contortrix (Serpentes, Viperidae): relationship to timing of spermatogenesis, mating, and agonistic behavior. Schuett, G.W., Harlow, H.J., Rose, J.D., Van Kirk, E.A., Murdoch, W.J. Gen. Comp. Endocrinol. (1997) [Pubmed]
  4. Conformational changes in the A3 domain of von Willebrand factor modulate the interaction of the A1 domain with platelet glycoprotein Ib. Obert, B., Houllier, A., Meyer, D., Girma, J.P. Blood (1999) [Pubmed]
  5. Function of disintegrin-like/cysteine-rich domains of atrolysin A. Inhibition of platelet aggregation by recombinant protein and peptide antagonists. Jia, L.G., Wang, X.M., Shannon, J.D., Bjarnason, J.B., Fox, J.W. J. Biol. Chem. (1997) [Pubmed]
  6. Characterization and platelet inhibitory activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of the viper Bitis arietans. Shebuski, R.J., Ramjit, D.R., Bencen, G.H., Polokoff, M.A. J. Biol. Chem. (1989) [Pubmed]
  7. Digestion of native collagen in the gut. Harkness, M.L., Harkness, R.D., Venn, M.F. Gut (1978) [Pubmed]
  8. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Fry, B.G., Wüster, W. Mol. Biol. Evol. (2004) [Pubmed]
  9. Crystal structure of bitiscetin, a von Willebrand factor-dependent platelet aggregation inducer. Hirotsu, S., Mizuno, H., Fukuda, K., Qi, M.C., Matsui, T., Hamako, J., Morita, T., Titani, K. Biochemistry (2001) [Pubmed]
  10. cDNA cloning and sequence analysis of a lysine-49 phospholipase A2 myotoxin from Agkistrodon contortrix laticinctus snake venom. Selistre de Araujo, H.S., White, S.P., Ownby, C.L. Arch. Biochem. Biophys. (1996) [Pubmed]
  11. Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Lenk, P., Kalyabina, S., Wink, M., Joger, U. Mol. Phylogenet. Evol. (2001) [Pubmed]
  12. Positive Darwinian selection in Vipera palaestinae phospholipase A2 genes is unexpectedly limited to the third exon. Kordis, D., Bdolah, A., Gubensek, F. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  13. The influence of body condition on 17-beta estradiol levels in relation to vitellogenesis in female Vipera aspis (Reptilia, Viperidae). Bonnet, X., Naulleau, G., Mauget, R. Gen. Comp. Endocrinol. (1994) [Pubmed]
  14. Afaâcytin, an alpha beta-fibrinogenase from Cerastes cerastes (horned viper) venom, activates purified factor X and induces serotonin release from human blood platelets. Laraba-Djebari, F., Martin-Eauclaire, M.F., Mauco, G., Marchot, P. Eur. J. Biochem. (1995) [Pubmed]
  15. Interaction of the neurotoxic and nontoxic secretory phospholipases A2 with the crotoxin inhibitor from Crotalus serum. Faure, G., Villela, C., Perales, J., Bon, C. Eur. J. Biochem. (2000) [Pubmed]
  16. Molecular cloning and expression of a functional snake venom serine proteinase, with platelet aggregating activity, from the Cerastes cerastes viper. Dekhil, H., Wisner, A., Marrakchi, N., El Ayeb, M., Bon, C., Karoui, H. Biochemistry (2003) [Pubmed]
  17. Molecular cloning and characterization of a neurotoxic phospholipase A2 from the venom of Taiwan habu (Trimeresurus mucrosquamatus). Tsai, I.H., Lu, P.J., Wang, Y.M., Ho, C.L., Liaw, L.L. Biochem. J. (1995) [Pubmed]
  18. Structural basis for low catalytic activity in Lys49 phospholipases A2--a hypothesis: the crystal structure of piratoxin II complexed to fatty acid. Lee, W.H., da Silva Giotto, M.T., Marangoni, S., Toyama, M.H., Polikarpov, I., Garratt, R.C. Biochemistry (2001) [Pubmed]
  19. Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Ito, M., Hamako, J., Sakurai, Y., Matsumoto, M., Fujimura, Y., Suzuki, M., Hashimoto, K., Titani, K., Matsui, T. Biochemistry (2001) [Pubmed]
  20. Crotalid venom vascular endothelial growth factors has preferential affinity for VEGFR-1. Characterization of Protobothrops mucrosquamatus venom VEGF. Chen, Y.L., Tsai, I.H., Hong, T.M., Tsai, S.H. Thromb. Haemost. (2005) [Pubmed]
  21. Crystal structure of von Willebrand factor A1 domain complexed with snake venom, bitiscetin: insight into glycoprotein Ibalpha binding mechanism induced by snake venom proteins. Maita, N., Nishio, K., Nishimoto, E., Matsui, T., Shikamoto, Y., Morita, T., Sadler, J.E., Mizuno, H. J. Biol. Chem. (2003) [Pubmed]
  22. Structural and functional characterization of basic PLA2 isolated from Crotalus durissus terrificus venom. Oliveira, D.G., Toyama, M.H., Novello, J.C., Beriam, L.O., Marangoni, S. J. Protein Chem. (2002) [Pubmed]
  23. Kallikrein-like proteinase from bushmaster snake venom. Felicori, L.F., Souza, C.T., Velarde, D.T., Magalhaes, A., Almeida, A.P., Figueiredo, S., Richardson, M., Diniz, C.R., Sanchez, E.F. Protein Expr. Purif. (2003) [Pubmed]
  24. Specific identification of Lachesis muta muta snake venom using antibodies against the plasminogen activator enzyme, LV-PA. Felicori, L.F., Chávez-Olórtegui, C., Sánchez, E.F. Toxicon (2005) [Pubmed]
  25. Purification and characterization of alpha 2-, alpha 2-beta- and beta-macroglobulin inhibitors in the hedgehog, Erinaceus europaeus: beta-macroglobulin identified as the plasma antihemorrhagic factor. de Wit, C.A., Weström, B.R. Toxicon (1987) [Pubmed]
  26. Molecular cloning of disintegrins from Cerastes vipera and Macrovipera lebetina transmediterranea venom gland cDNA libraries: insight into the evolution of the snake venom integrin-inhibition system. Sanz, L., Bazaa, A., Marrakchi, N., Pérez, A., Chenik, M., Bel Lasfer, Z., El Ayeb, M., Calvete, J.J. Biochem. J. (2006) [Pubmed]
 
WikiGenes - Universities