The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Crotalus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Crotalus

  • Two peptic fragments (residues 37-88 and 43-88) of guinea pig myelin basic protein which are capable of inducing experimental allergic encephalomyelitis in Lewis rats were cleaved to shorter fragments with alpha-protease (Crotalus atrox proteinase, EC 3.4.24.1) and thermolysin (EC 3.4.24.4) [1].
  • One peptide was derived from a phage display library, the other from the integrin-binding moiety of the toxin from the American pit viper, Crotalus molossus molossus [2].
  • Pseudomonas exotoxin A, ricin, tumor necrosis factor alpha (TNF-alpha), diphtheria toxin (DT), Crotalus durissus terrificus toxin, crotalus adamenteus toxin, Naja naja toxin, and Naja mocambique toxin were evaluated [3].
  • The substrate analog, N alpha-dansyl-N omega-(1,N6-etheno-ADP-ribosyl)arginine methyl ester, was used to assay the catalytic activities of dinitrogenase reductase activating glycohydrolase from Rhodospirillum rubrum and nucleotide pyrophosphatase from Crotalus adamanteus [4].
  • The role of peripheral potassium channels on the antinociceptive effect of Crotalus durissus terrificus venom, a mixed delta- and kappa-opioid receptor agonist, was investigated in hyperalgesia induced by carrageenin or prostaglandin E(2) [5].
 

High impact information on Crotalus

  • Cloning and sequencing shows that the primary structure of the human s-PLA2 has about 37% homology with that of bovine pancreatic PLA2 and 44% homology with that of Crotalus atrox PLA2 [6].
  • Here we investigated involvement of the Src family in the proximal signals through the GPVI-FcRgamma complex, using the snake venom convulxin from Crotalus durissus terrificus, which specifically recognizes GPVI and activates platelets through cross-linking GPVI [7].
  • The N-terminal sequence revealed significant homology to pig pancreatic kallikrein and to kallikrein like enzymes from Crotalus atrox and Crotalus adamanteus venom [8].
  • Adamalysin II, a 24 kDa zinc endopeptidase from the snake venom of Crotalus adamanteus, is a member of a large family of metalloproteinases isolated as small proteinases or proteolytic domains of mosaic haemorrhagic proteins from various snake venoms [9].
  • The reconstitutable apoprotein of Crotalus adamanteus L-amino acid oxidase was prepared using hydrophobic interaction chromatography [10].
 

Chemical compound and disease context of Crotalus

 

Biological context of Crotalus

 

Anatomical context of Crotalus

  • RESULTS: Of the phospholipase A2 toxins, Crotalus durissus terrificus and Naja mocambique are active against the PSA secreting LNCaP cell line; however, the effect is reversible, and no other hormone refractory prostate cell line tested is sensitive [3].
  • The inhibitory effect of the plant flavonoid, rutin, on group I phospholipase A2 (PLA2-I) from porcine pancreas and Naja naja, and on group II phospholipase A2 (PLA2-II) from Vipera russelli and Crotalus atrox was investigated [19].
  • Glycerol monoethers in the scent gland secretions of the western diamondback rattlesnake (Crotalus atrox; Serpentes, Crotalinae) [20].
  • The molecular mechanism of Ca(2+) release by myotoxin a (MTYX), a polypeptide toxin isolated from the venom of prairie rattlesnakes (Crotalus viridis viridis), was investigated in the heavy fraction of sarcoplasmic reticulum (HSR) of rabbit skeletal muscles [21].
  • Immunochemical detection of purified crotoxin from Crotalus durissus terrificus venom in the motor end plate of striated muscle in CBA/J mice [22].
 

Associations of Crotalus with chemical compounds

  • Antithrombotic effect of crotalin, a platelet membrane glycoprotein Ib antagonist from venom of Crotalus atrox [23].
  • The DNA from FUra-treated S-49 cells was purified by cesium chloride gradient centrifugation and degraded to nucleosides by DNase I and Crotalus atrox snake venom [24].
  • Human fibrinogen exposed to protease III from Crotalus atrox venom is cleaved near the NH2 terminus of the B beta chain yielding a species of Mr 325,000 (Fg325) with impaired thrombin clottability [25].
  • Complete primary structure of a galactose-specific lectin from the venom of the rattlesnake Crotalus atrox. Homologies with Ca2(+)-dependent-type lectins [26].
  • L-Methionine sulfoximine is a substrate of L-amino acid oxidase (Crotalus adamanteus), glutamine transaminase, and gamma-cystathionase [27].
 

Gene context of Crotalus

  • Exogenous Naja naja group I PLA2 had little effect on the mineralization of bone nodules; however, Crotalus adamanteus group II PLA2 inhibited mineralization at concentrations similar to those found in the media from IL-1 alpha-treated cultures [28].
  • Convulxin (CVX), a C-type snake protein from Crotalus durissus terrificus venom, is the quintessential agonist for studies of the collagen receptor, glycoprotein VI (GPVI) and its role in platelet adhesion to collagens [29].
  • These results suggested the presence of (6-4) photolyase in cultured goldfish cells as in Drosophila, Xenopus and Crotalus [30].
  • Sequence studies on the NH2-terminal region of the protein indicate that LV-Ka shares a high degree of sequence homology with the kallikrein-like enzymes EI and EII from Crotalus atrox, with crotalase from Crotalus adamanteus and significant homology with other serine proteinases from snake venoms and vertebrate serum enzymes [31].
  • Kallikrein-like enzyme from Crotalus ruber ruber (red rattlesnake) venom [32].
 

Analytical, diagnostic and therapeutic context of Crotalus

  • We have used alkyl ether analogs of ethanolamine and choline phospholipids as ligands to purify phospholipase A2 (EC 3.1.1.4) from Crotalus adamanteus venom by affinity chromatography [33].
  • Toxins from the venoms of Crotalus durissus terrificus, Crotalus s. scutulatus and Crotalus viridis concolor were compared using gel filtration, ion-exchange chromatography on DEAE-Sephacel and denaturing and non-denaturing polyacrylamide gel electrophoresis [34].
  • The venom of Crotalus durissus terrificus was fractionated by reverse-phase HPLC to obtain crotapotins (F5 and F7) and PLA2 (F15, F16, and F17) of high purity [35].
  • A study was made on the venom of a single specimen of the rattlesnake Crotalus molossus molossus, utilizing isoelectric focusing in polyacrylamide gels, to determine what effects various commonly employed preparative procedures might have on the chemical properties of the venom [36].
  • Venoms from Bothrops asper, B. godmani, B. lateralis, B. nasutus, B. ophryomegas, B. schlegelii, B. nummifer, B. picadoi, Crotalus durissus durissus and Lachesis muta stenophrys were separated by SDS-PAGE, transferred to cellulose nitrate membrane and reacted against five different antivenoms [37].

References

  1. Treatment of an encephalitogenic peptide from guinea pig myelin basic protein with alpha-protease and thermolysin. Isolation of fragments and determination of cleavage sites. Nomura, K., Martenson, R.E., Deibler, G.E. J. Biol. Chem. (1977) [Pubmed]
  2. A nonviral vector system for efficient gene transfer to corneal endothelial cells via membrane integrins. Shewring, L., Collins, L., Lightman, S.L., Hart, S., Gustafsson, K., Fabre, J.W. Transplantation (1997) [Pubmed]
  3. Identification of diphtheria toxin via screening as a potent cell cycle and p53-independent cytotoxin for human prostate cancer therapeutics. Rodriguez, R., Lim, H.Y., Bartkowski, L.M., Simons, J.W. Prostate (1998) [Pubmed]
  4. Fluorometric assay for ADP-ribosylarginine cleavage enzymes. Pope, M.R., Saari, L.L., Ludden, P.W. Anal. Biochem. (1987) [Pubmed]
  5. Activation of peripheral ATP-sensitive K+ channels mediates the antinociceptive effect of Crotalus durissus terrificus snake venom. Picolo, G., Cassola, A.C., Cury, Y. Eur. J. Pharmacol. (2003) [Pubmed]
  6. Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 A resolution. Wery, J.P., Schevitz, R.W., Clawson, D.K., Bobbitt, J.L., Dow, E.R., Gamboa, G., Goodson, T., Hermann, R.B., Kramer, R.M., McClure, D.B. Nature (1991) [Pubmed]
  7. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets. Ezumi, Y., Shindoh, K., Tsuji, M., Takayama, H. J. Exp. Med. (1998) [Pubmed]
  8. Helodermatine, a kallikrein-like, hypotensive enzyme from the venom of Heloderma horridum horridum (Mexican beaded lizard). Alagon, A., Possani, L.D., Smart, J., Schleuning, W.D. J. Exp. Med. (1986) [Pubmed]
  9. First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases. Gomis-Rüth, F.X., Kress, L.F., Bode, W. EMBO J. (1993) [Pubmed]
  10. Glycerol-induced development of catalytically active conformation of Crotalus adamanteus L-amino acid oxidase in vitro. Raibekas, A.A., Massey, V. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  11. Successful treatment of crotalid-induced neurotoxicity with a new polyspecific crotalid Fab antivenom. Clark, R.F., Williams, S.R., Nordt, S.P., Boyer-Hassen, L.V. Annals of emergency medicine. (1997) [Pubmed]
  12. Activity of mammalian secreted phospholipase A(2) from inflammatory peritoneal fluid towards PEG-liposomes. Early indications. Vermehren, C., Jørgensen, K., Schiffelers, R., Frokjaer, S. International journal of pharmaceutics. (2001) [Pubmed]
  13. Effects of exogenous phospholipase enzymes, arachidonic acid and 1-oleoyl-2-acetyl-sn-glycerol on ketogenesis in isolated rat hepatocytes. Chihara, M., Nomura, T., Tachibana, M., Nomura, H., Nomura, Y., Hagino, Y. Biochim. Biophys. Acta (1989) [Pubmed]
  14. Function of disintegrin-like/cysteine-rich domains of atrolysin A. Inhibition of platelet aggregation by recombinant protein and peptide antagonists. Jia, L.G., Wang, X.M., Shannon, J.D., Bjarnason, J.B., Fox, J.W. J. Biol. Chem. (1997) [Pubmed]
  15. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. Polgár, J., Clemetson, J.M., Kehrel, B.E., Wiedemann, M., Magnenat, E.M., Wells, T.N., Clemetson, K.J. J. Biol. Chem. (1997) [Pubmed]
  16. Hydrolysis of phosphatidylethanolamine induced by nominally synthetic lysophosphoglycerides: methodological implications. Lee, F.C., Ahumada, G.G., Gross, R.W., Sobel, B.E. Biochemistry (1980) [Pubmed]
  17. Purification, cDNA cloning and characterization of the vascular apoptosis-inducing protein, HV1, from Trimeresurus flavoviridis. Masuda, S., Hayashi, H., Atoda, H., Morita, T., Araki, S. Eur. J. Biochem. (2001) [Pubmed]
  18. Lability of blood volume in snakes and its relation to activity and hypertension. Lillywhite, H.B., Smits, A.W. J. Exp. Biol. (1984) [Pubmed]
  19. Flavonoids as phospholipase A2 inhibitors: importance of their structure for selective inhibition of group II phospholipase A2. Lindahl, M., Tagesson, C. Inflammation (1997) [Pubmed]
  20. Glycerol monoethers in the scent gland secretions of the western diamondback rattlesnake (Crotalus atrox; Serpentes, Crotalinae). Weldon, P.J., Lloyd, H.A., Blum, M.S. Experientia (1990) [Pubmed]
  21. Identification of 30 kDa protein for Ca(2+) releasing action of myotoxin a with a mechanism common to DIDS in skeletal muscle sarcoplasmic reticulum. Hirata, Y., Nakahata, N., Ohkura, M., Ohizumi, Y. Biochim. Biophys. Acta (1999) [Pubmed]
  22. Immunochemical detection of purified crotoxin from Crotalus durissus terrificus venom in the motor end plate of striated muscle in CBA/J mice. Cardi, B.A., Nascimento, N., Rogero, J.R., Andrade Júnior, H.F. Braz. J. Med. Biol. Res. (1992) [Pubmed]
  23. Antithrombotic effect of crotalin, a platelet membrane glycoprotein Ib antagonist from venom of Crotalus atrox. Chang, M.C., Lin, H.K., Peng, H.C., Huang, T.F. Blood (1998) [Pubmed]
  24. Dissociation of 5-fluorouracil-induced DNA fragmentation from either its incorporation into DNA or its cytotoxicity in murine T-lymphoma (S-49) cells. Parker, W.B., Kennedy, K.A., Klubes, P. Cancer Res. (1987) [Pubmed]
  25. Conservation of human fibrinogen conformation after cleavage of the B beta chain NH2 terminus. Pandya, B.V., Cierniewski, C.S., Budzynski, A.Z. J. Biol. Chem. (1985) [Pubmed]
  26. Complete primary structure of a galactose-specific lectin from the venom of the rattlesnake Crotalus atrox. Homologies with Ca2(+)-dependent-type lectins. Hirabayashi, J., Kusunoki, T., Kasai, K. J. Biol. Chem. (1991) [Pubmed]
  27. Enzymatic reactions of methionine sulfoximine. Conversion to the corresponding alpha-imino and alpha-keto acids and to alpha-ketobutyrate and methane sulfinimide. Cooper, A.J., Stephani, R.A., Meister, A. J. Biol. Chem. (1976) [Pubmed]
  28. The role of phospholipase A2 in interleukin-1 alpha-mediated inhibition of mineralization of the osteoid formed by fetal rat calvaria cells in vitro. Ellies, L.G., Heersche, J.N., Pruzanski, W., Vadas, P., Aubin, J.E. J. Dent. Res. (1993) [Pubmed]
  29. Convulxin binds to native, human glycoprotein Ib alpha. Kanaji, S., Kanaji, T., Furihata, K., Kato, K., Ware, J.L., Kunicki, T.J. J. Biol. Chem. (2003) [Pubmed]
  30. Photoreactivating enzyme for (6-4) photoproducts in cultured goldfish cells. Uchida, N., Mitani, H., Todo, T., Ikenaga, M., Shima, A. Photochem. Photobiol. (1997) [Pubmed]
  31. Kallikrein-like proteinase from bushmaster snake venom. Felicori, L.F., Souza, C.T., Velarde, D.T., Magalhaes, A., Almeida, A.P., Figueiredo, S., Richardson, M., Diniz, C.R., Sanchez, E.F. Protein Expr. Purif. (2003) [Pubmed]
  32. Kallikrein-like enzyme from Crotalus ruber ruber (red rattlesnake) venom. Mori, N., Sugihara, H. Int. J. Biochem. (1988) [Pubmed]
  33. Rapid purification of phospholipase A2 from Crotalus adamanteus venom by affinity chromatography. Rock, C.O., Snyder, F. J. Biol. Chem. (1975) [Pubmed]
  34. Comparative studies on three rattlesnake toxins. Aird, S.D., Kaiser, I.I. Toxicon (1985) [Pubmed]
  35. Structural and functional characterization of basic PLA2 isolated from Crotalus durissus terrificus venom. Oliveira, D.G., Toyama, M.H., Novello, J.C., Beriam, L.O., Marangoni, S. J. Protein Chem. (2002) [Pubmed]
  36. Effects of preparatory procedures on the venom from a rattlesnake (Crotalus molossus molossus), as determined by isoelectric focusing. Egen, N.B., Russell, F.E. Toxicon (1984) [Pubmed]
  37. Comparison of the immunogenicity and antigenic composition of ten Central American snake venoms. Anderson, S.G., Gutiérrez, J.M., Ownby, C.L. Toxicon (1993) [Pubmed]
 
WikiGenes - Universities