The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Avena sativa

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Avena sativa

 

High impact information on Avena sativa

  • The subunit organization of the tonoplast H+-pumping ATPase from oat roots (Avena sativa L. var. Lang) was investigated [2].
  • We have investigated the role of inositol 1,4,5-trisphosphate (InsP(3)) in the gravitropic response of oat (Avena sativa) shoot pulvini [3].
  • We investigated the effects of light-dependent growth on the relative steady-state levels of the mRNAs and protein levels of alpha-tubulin and the epsilon-subunit of the chaperonin containing tailless complex protein-1 in oat (Avena sativa) coleoptiles, which were grown in different light conditions to establish different growth responses [4].
  • We have further resolved these functional regions by analysis of N-terminal deletion and alanine-scanning mutants of oat (Avena sativa) phyA in transgenic tobacco (Nicotiana tabacum) [5].
  • Four cereals, Hordeum vulgare (barley), Triticum aestivum (wheat), Secale cereal (rye), and Avena sativa (oat), were grown in a defined nutritional medium with and without the arbuscular mycorrhizal fungus Glomus intraradices [6].
 

Biological context of Avena sativa

 

Anatomical context of Avena sativa

 

Associations of Avena sativa with chemical compounds

  • The inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was used to probe the structure and function of the vacuolar H+-translocating ATPase from oat roots (Avena sativa var. Lang) [13].
  • To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process [14].
  • We solubilized 90% of the FCBP from oat (Avena sativa L. cv Victory) root PM in an active form with 1% octyl-glucoside [15].
  • I examined the ability of frozen-thawed Avena sativa L. coleoptile sections under applied load to extend in response to the calcium chelators ethyleneglycol-bis-(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[carboxymethyl]aminoquinoline (Quin II) [16].
  • Six chloroform/methanol-soluble proteins from oat endosperm (Avena sativa) have been isolated and characterized by a purification procedure based on extraction with volatile solvents, followed by reversed-phase high performance liquid chromatography [17].
 

Gene context of Avena sativa

  • Here we describe removal of FMN from the LOV2 domain of Avena sativa using a hydrophobic matrix and successful incorporation of flavin adenine dinucleotide (FAD), riboflavin, and 5'-malonyl-riboflavin into the resulting apoprotein; 5-deaza-FMN was not incorporated under the applied conditions [18].
  • In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545] [19].
  • The influence of glycerol and chloroplast lipids on the spectral shifts of pigments associated with NADPH: protochlorophyllide oxidoreductase from Avena sativa L [20].
  • A 60 kDa protein (P60) co-purified with phytochrome was identified as avenacosidase, a beta-glucosidase which is part of the defense system of Avena sativa [21].
  • Here, we describe a simple procedure for purification of pigment-free POR from etioplasts of Avena sativa seedlings [22].
 

Analytical, diagnostic and therapeutic context of Avena sativa

References

  1. Toxicity of methyl tert-butyl ether to plants (Avena sativa, Zea mays, Triticum aestivum, and Lactuca sativa). An, Y.J., Kampbell, D.H., McGill, M.E. Environ. Toxicol. Chem. (2002) [Pubmed]
  2. Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots. Lai, S.P., Randall, S.K., Sze, H. J. Biol. Chem. (1988) [Pubmed]
  3. A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Perera, I.Y., Heilmann, I., Chang, S.C., Boss, W.F., Kaufman, P.B. Plant Physiol. (2001) [Pubmed]
  4. Characterization of protein and transcript levels of the chaperonin containing tailless complex protein-1 and tubulin during light-regulated growth of oat seedlings. Moser, M., Schäfer, E., Ehmann, B. Plant Physiol. (2000) [Pubmed]
  5. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity. Jordan, E.T., Marita, J.M., Clough, R.C., Vierstra, R.D. Plant Physiol. (1997) [Pubmed]
  6. Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Maier, W., Peipp, H., Schmidt, J., Wray, V., Strack, D. Plant Physiol. (1995) [Pubmed]
  7. Gravitropism of oat and wheat coleoptiles: dependence on the stimulation angle and involvement of autotropic straightening. Tarui, Y., Iino, M. Plant Cell Physiol. (1997) [Pubmed]
  8. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers. da Rosa Corrêa, A.X., Rörig, L.R., Verdinelli, M.A., Cotelle, S., Férard, J.F., Radetski, C.M. Sci. Total Environ. (2006) [Pubmed]
  9. Nucleotide sequence of oat (Avena sativa L.) cDNA encoding an auxin-binding protein (ABP1). Anai, T., Kono, N., Takai, R., Tsuge, T., Matsui, M., Kosemura, S., Yamamura, S., Hasegawa, K. DNA Seq. (1998) [Pubmed]
  10. Polyamine binding to proteins in oat and Petunia protoplasts. Mizrahi, Y., Applewhite, P.B., Galston, A.W. Plant Physiol. (1989) [Pubmed]
  11. In vivo and in vitro effects of cadmium on H+ ATPase activity of plasma membrane vesicles from oat (Avena sativa L.) roots. Astolfi, S., Zuchi, S., Chiani, A., Passera, C. J. Plant Physiol. (2003) [Pubmed]
  12. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the beta-position, in grass cell walls. Lam, T.B., Kadoya, K., Iiyama, K. Phytochemistry (2001) [Pubmed]
  13. N,N'-dicyclohexylcarbodiimide-binding proteolipid of the vacuolar H+-ATPase from oat roots. Kaestner, K.H., Randall, S.K., Sze, H. J. Biol. Chem. (1988) [Pubmed]
  14. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima. Cleland, R.E. Plant Physiol. (1992) [Pubmed]
  15. Purification and identification of the fusicoccin binding protein from oat root plasma membrane. de Boer, A.H., Watson, B.A., Cleland, R.E. Plant Physiol. (1989) [Pubmed]
  16. Calcium bridges are not load-bearing cell-wall bonds in Avena coleoptiles. Rayle, D.L. Planta (1989) [Pubmed]
  17. Identification of the three major coeliac immunoreactive proteins and one alpha-amylase inhibitor from oat endosperm. Rocher, A., Colilla, F., Ortiz, M.L., Mendez, E. FEBS Lett. (1992) [Pubmed]
  18. Chromophore exchange in the LOV2 domain of the plant photoreceptor phototropin1 from oat. Dürr, H., Salomon, M., Rüdiger, W. Biochemistry (2005) [Pubmed]
  19. Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity. Harper, S.M., Christie, J.M., Gardner, K.H. Biochemistry (2004) [Pubmed]
  20. The influence of glycerol and chloroplast lipids on the spectral shifts of pigments associated with NADPH: protochlorophyllide oxidoreductase from Avena sativa L. Klement, H., Oster, U., Rüdiger, W. FEBS Lett. (2000) [Pubmed]
  21. The amino acid sequence previously attributed to a protein kinase or a TCP1-related molecular chaperone and co-purified with phytochrome is a beta-glucosidase. Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H.A., Lottspeich, F., Eckerskorn, C., Grimm, R., Rüdiger, W. FEBS Lett. (1994) [Pubmed]
  22. Pigment-free NADPH:protochlorophyllide oxidoreductase from Avena sativa L. Purification and substrate specificity. Klement, H., Helfrich, M., Oster, U., Schoch, S., Rüdiger, W. Eur. J. Biochem. (1999) [Pubmed]
  23. Europium uptake and partitioning in oat (Avena sativa) roots as studied by laser-induced fluorescence spectroscopy and confocal microscopy profiling technique. Fellows, R.J., Wang, Z., Ainsworth, C.C. Environ. Sci. Technol. (2003) [Pubmed]
  24. Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. Livingstone, J.R., Maruo, T., Yoshida, I., Tarui, Y., Hirooka, K., Yamamoto, Y., Tsutui, N., Hirasawa, E. J. Plant Res. (2003) [Pubmed]
 
WikiGenes - Universities