The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Petunia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Petunia

 

High impact information on Petunia

 

Chemical compound and disease context of Petunia

 

Biological context of Petunia

 

Anatomical context of Petunia

 

Associations of Petunia with chemical compounds

  • Here we report on the isolation of complementary DNA clones of two different flavonoid 3',5'-hydroxylase genes that are expressed in petunia flowers [6].
  • The petunia mutant RL01, which accumulates dihydrokaempferol, shows no flower pigmentation [7].
  • FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture [20].
  • In this paper we report the isolation of cDNA clones encoding the flavonoid-biosynthetic enzyme chalcone flavanone isomerase (CHI) from Petunia hybrida [21].
  • In Petunia, the expression of the 5-enolpyruvylshikimate-3-phosphate synthase gene (EPSPS) is tissue-specific and developmentally regulated [22].
 

Gene context of Petunia

 

Analytical, diagnostic and therapeutic context of Petunia

References

  1. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. Nakajima , J., Tanaka, Y., Yamazaki, M., Saito, K. J. Biol. Chem. (2001) [Pubmed]
  2. Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Zubko, E., Adams, C.J., Macháèková, I., Malbeck, J., Scollan, C., Meyer, P. Plant J. (2002) [Pubmed]
  3. A NADH dehydrogenase subunit gene is co-transcribed with the abnormal Petunia mitochondrial gene associated with cytoplasmic male sterility. Rasmussen, J., Hanson, M.R. Mol. Gen. Genet. (1989) [Pubmed]
  4. Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Torres, E., Vaquero, C., Nicholson, L., Sack, M., Stöger, E., Drossard, J., Christou, P., Fischer, R., Perrin, Y. Transgenic Res. (1999) [Pubmed]
  5. S proteins control rejection of incompatible pollen in Petunia inflata. Lee, H.S., Huang, S., Kao, T. Nature (1994) [Pubmed]
  6. Cloning and expression of cytochrome P450 genes controlling flower colour. Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.G., Lu, C.Y., Farcy, E., Stevenson, T.W., Cornish, E.C. Nature (1993) [Pubmed]
  7. A new petunia flower colour generated by transformation of a mutant with a maize gene. Meyer, P., Heidmann, I., Forkmann, G., Saedler, H. Nature (1987) [Pubmed]
  8. Reductase activity encoded by the HM1 disease resistance gene in maize. Johal, G.S., Briggs, S.P. Science (1992) [Pubmed]
  9. Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site. Padgette, S.R., Re, D.B., Gasser, C.S., Eichholtz, D.A., Frazier, R.B., Hironaka, C.M., Levine, E.B., Shah, D.M., Fraley, R.T., Kishore, G.M. J. Biol. Chem. (1991) [Pubmed]
  10. Multiple trans-splicing events are required to produce a mature nad1 transcript in a plant mitochondrion. Conklin, P.L., Wilson, R.K., Hanson, M.R. Genes Dev. (1991) [Pubmed]
  11. Evidence for cytosine methylation of non-symmetrical sequences in transgenic Petunia hybrida. Meyer, P., Niedenhof, I., ten Lohuis, M. EMBO J. (1994) [Pubmed]
  12. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Snowden, K.C., Simkin, A.J., Janssen, B.J., Templeton, K.R., Loucas, H.M., Simons, J.L., Karunairetnam, S., Gleave, A.P., Clark, D.G., Klee, H.J. Plant Cell (2005) [Pubmed]
  13. A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression. Takatsuji, H., Nakamura, N., Katsumoto, Y. Plant Cell (1994) [Pubmed]
  14. Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M.M., Angenent, G.C. Plant Cell (1998) [Pubmed]
  15. PH4 of Petunia Is an R2R3 MYB Protein That Activates Vacuolar Acidification through Interactions with Basic-Helix-Loop-Helix Transcription Factors of the Anthocyanin Pathway. Quattrocchio, F., Verweij, W., Kroon, A., Spelt, C., Mol, J., Koes, R. Plant Cell (2006) [Pubmed]
  16. Protein polymorphism generated by differential RNA editing of a plant mitochondrial rps12 gene. Lu, B., Wilson, R.K., Phreaner, C.G., Mulligan, R.M., Hanson, M.R. Mol. Cell. Biol. (1996) [Pubmed]
  17. Structure, expression, and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes of petunia and tomato. Gasser, C.S., Winter, J.A., Hironaka, C.M., Shah, D.M. J. Biol. Chem. (1988) [Pubmed]
  18. Cell cycle regulation by plant growth regulators: involvement of auxin and cytokinin in the re-entry of Petunia protoplasts into the cell cycle. Tréhin, C., Planchais, S., Glab, N., Perennes, C., Tregear, J., Bergounioux, C. Planta (1998) [Pubmed]
  19. Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction of macromolecules into plant cells. Rosenbluh, J., Singh, S.K., Gafni, Y., Graessmann, A., Loyter, A. Biochim. Biophys. Acta (2004) [Pubmed]
  20. FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Tobeña-Santamaria, R., Bliek, M., Ljung, K., Sandberg, G., Mol, J.N., Souer, E., Koes, R. Genes Dev. (2002) [Pubmed]
  21. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. van Tunen, A.J., Koes, R.E., Spelt, C.E., van der Krol, A.R., Stuitje, A.R., Mol, J.N. EMBO J. (1988) [Pubmed]
  22. Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings. Takatsuji, H., Mori, M., Benfey, P.N., Ren, L., Chua, N.H. EMBO J. (1992) [Pubmed]
  23. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Ferrario, S., Immink, R.G., Shchennikova, A., Busscher-Lange, J., Angenent, G.C. Plant Cell (2003) [Pubmed]
  24. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. Schiebel, W., Pélissier, T., Riedel, L., Thalmeir, S., Schiebel, R., Kempe, D., Lottspeich, F., Sänger, H.L., Wassenegger, M. Plant Cell (1998) [Pubmed]
  25. Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Meyer, K., Cusumano, J.C., Somerville, C., Chapple, C.C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  26. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Feinbaum, R.L., Ausubel, F.M. Mol. Cell. Biol. (1988) [Pubmed]
  27. Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in Arabidopsis. Further evidence for differential regulation of "early" and "late" genes. Pelletier, M.K., Murrell, J.R., Shirley, B.W. Plant Physiol. (1997) [Pubmed]
  28. Site-directed mutagenesis of Petunia hybrida 5-enolpyruvylshikimate-3-phosphate synthase: Lys-23 is essential for substrate binding. Huynh, Q.K., Bauer, S.C., Bild, G.S., Kishore, G.M., Borgmeyer, J.R. J. Biol. Chem. (1988) [Pubmed]
  29. NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Ge, Y.X., Angenent, G.C., Wittich, P.E., Peters, J., Franken, J., Busscher, M., Zhang, L.M., Dahlhaus, E., Kater, M.M., Wullems, G.J., Creemers-Molenaar, T. Plant J. (2000) [Pubmed]
  30. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., Yamaguchi-Shinozaki, K. Plant Physiol. (2004) [Pubmed]
  31. Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Yamazaki, M., Yamagishi, E., Gong, Z., Fukuchi-Mizutani, M., Fukui, Y., Tanaka, Y., Kusumi, T., Yamaguchi, M., Saito, K. Plant Mol. Biol. (2002) [Pubmed]
 
WikiGenes - Universities