The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Wilms Tumor

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Wilms Tumor


High impact information on Wilms Tumor


Chemical compound and disease context of Wilms Tumor


Biological context of Wilms Tumor


Anatomical context of Wilms Tumor


Gene context of Wilms Tumor

  • Analysis of these genes reveals a consensus promoter structure consisting of multiple, often closely spaced c-Myc binding sites and three additional Wilm's tumor and Egr1-like motifs [25].
  • The Wilms' tumor suppressor protein WT1 is a transcriptional regulator that plays a key role in the development of the kidneys [26].
  • MIG1 is related to the mammalian Krox/Egr, Wilms' tumor, and Sp1 finger proteins [27].
  • BASP1 is a transcriptional cosuppressor for the Wilms' tumor suppressor protein WT1 [26].
  • Whereas Wilms' tumor was the most frequent tumor seen in BWS cases with UPD for 11p15 or H19 hypermethylation, none of the embryonal tumors with imprinting defects at KCNQ1OT1 was a Wilms' tumor [28].
  • We show that miR-562, a microRNA within the candidate region, is expressed only in kidney and colon and regulates EYA1, a critical gene for renal development. miR-562 expression is reduced in Wilms' tumor and may contribute to tumorigenesis by deregulating EYA1 [29].

Analytical, diagnostic and therapeutic context of Wilms Tumor

  • The Wilms' tumor gene WT1 is overexpressed in leukemias and various types of solid tumors, and the WT1 protein was demonstrated to be an attractive target antigen for immunotherapy against these malignancies [21].
  • In situ hybridization was used to examine, in parallel, the localization of insulin-like growth factor II (Igf2) and WT1 transcripts in normal fetal kidney and Wilms' tumor [30].
  • CONCLUSION: Treatment for stage I FH Wilms' tumor is generally successful using vincristine monotherapy after immediate nephrectomy, and therefore, the risks of dactinomycin hepatopathy can be avoided [31].
  • We investigated the role of COX-2 in vascular assembly by testing the effect of the specific COX-2 inhibitor SC-236 in an orthotopic xenograft model of human Wilms' tumor [32].
  • We report a novel human gene whose product specifically associates with the negative regulatory domain of the Wilms' tumor gene product (WT1) in a yeast two-hybrid screen and with WT1 in immunoprecipitation and glutathione S-transferase (GST) capture assays [33].


  1. Microdeletion and IGF2 loss of imprinting in a cascade causing Beckwith-Wiedemann syndrome with Wilms' tumor. Prawitt, D., Enklaar, T., Gärtner-Rupprecht, B., Spangenberg, C., Lausch, E., Reutzel, D., Fees, S., Korzon, M., Brozek, I., Limon, J., Housman, D.E., Pelletier, J., Zabel, B. Nat. Genet. (2005) [Pubmed]
  2. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Gessler, M., Poustka, A., Cavenee, W., Neve, R.L., Orkin, S.H., Bruns, G.A. Nature (1990) [Pubmed]
  3. Structural rearrangement of the retinoblastoma gene in human breast carcinoma. T'Ang, A., Varley, J.M., Chakraborty, S., Murphree, A.L., Fung, Y.K. Science (1988) [Pubmed]
  4. Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Reynolds, P.A., Smolen, G.A., Palmer, R.E., Sgroi, D., Yajnik, V., Gerald, W.L., Haber, D.A. Genes Dev. (2003) [Pubmed]
  5. Altered expression of the WT1 wilms tumor suppressor gene in human breast cancer. Silberstein, G.B., Van Horn, K., Strickland, P., Roberts, C.T., Daniel, C.W. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  6. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Hammes, A., Guo, J.K., Lutsch, G., Leheste, J.R., Landrock, D., Ziegler, U., Gubler, M.C., Schedl, A. Cell (2001) [Pubmed]
  7. Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Nachtigal, M.W., Hirokawa, Y., Enyeart-VanHouten, D.L., Flanagan, J.N., Hammer, G.D., Ingraham, H.A. Cell (1998) [Pubmed]
  8. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Call, K.M., Glaser, T., Ito, C.Y., Buckler, A.J., Pelletier, J., Haber, D.A., Rose, E.A., Kral, A., Yeger, H., Lewis, W.H. Cell (1990) [Pubmed]
  9. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Haber, D.A., Buckler, A.J., Glaser, T., Call, K.M., Pelletier, J., Sohn, R.L., Douglass, E.C., Housman, D.E. Cell (1990) [Pubmed]
  10. Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms' tumor transcription factor Wt1. Wagner, N., Wagner, K.D., Theres, H., Englert, C., Schedl, A., Scholz, H. Genes Dev. (2005) [Pubmed]
  11. Hyaluronidase levels in urine from Wilms' tumor patients. Stern, M., Longaker, M.T., Adzick, N.S., Harrison, M.R., Stern, R. J. Natl. Cancer Inst. (1991) [Pubmed]
  12. Induction of renal tumors in cynomolgus monkeys (Macaca fascicularis) by prenatal exposure to 1,2-dimethylhydrazine. Beniashvili, D.S. J. Natl. Cancer Inst. (1989) [Pubmed]
  13. Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms' tumor. Prawitt, D., Enklaar, T., Gärtner-Rupprecht, B., Spangenberg, C., Oswald, M., Lausch, E., Schmidtke, P., Reutzel, D., Fees, S., Lucito, R., Korzon, M., Brozek, I., Limon, J., Housman, D.E., Pelletier, J., Zabel, B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  14. Hepatopathy-thrombocytopenia syndrome--a complication of dactinomycin therapy for Wilms' tumor: a report from the United Kingdom Childrens Cancer Study Group. Raine, J., Bowman, A., Wallendszus, K., Pritchard, J. J. Clin. Oncol. (1991) [Pubmed]
  15. Selective mutation of codons 204 and 213 of the p53 gene in rat tumors induced by alkylating N-nitroso compounds. Ohgaki, H., Hard, G.C., Hirota, N., Maekawa, A., Takahashi, M., Kleihues, P. Cancer Res. (1992) [Pubmed]
  16. Par4 is a coactivator for a splice isoform-specific transcriptional activation domain in WT1. Richard, D.J., Schumacher, V., Royer-Pokora, B., Roberts, S.G. Genes Dev. (2001) [Pubmed]
  17. RNA editing in the Wilms' tumor susceptibility gene, WT1. Sharma, P.M., Bowman, M., Madden, S.L., Rauscher, F.J., Sukumar, S. Genes Dev. (1994) [Pubmed]
  18. RNA expression of the WT1 gene in Wilms' tumors in relation to histology. Miwa, H., Tomlinson, G.E., Timmons, C.F., Huff, V., Cohn, S.L., Strong, L.C., Saunders, G.F. J. Natl. Cancer Inst. (1992) [Pubmed]
  19. A rodent model for Wilms tumors: embryonal kidney neoplasms induced by N-nitroso-N'-methylurea. Sharma, P.M., Bowman, M., Yu, B.F., Sukumar, S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  20. Identical genetic changes in different histologic components of Wilms' tumors. Zhuang, Z., Merino, M.J., Vortmeyer, A.O., Bryant, B., Lash, A.E., Wang, C., Deavers, M.T., Shelton, W.F., Kapur, S., Chandra, R.S. J. Natl. Cancer Inst. (1997) [Pubmed]
  21. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Oka, Y., Tsuboi, A., Taguchi, T., Osaki, T., Kyo, T., Nakajima, H., Elisseeva, O.A., Oji, Y., Kawakami, M., Ikegame, K., Hosen, N., Yoshihara, S., Wu, F., Fujiki, F., Murakami, M., Masuda, T., Nishida, S., Shirakata, T., Nakatsuka, S., Sasaki, A., Udaka, K., Dohy, H., Aozasa, K., Noguchi, S., Kawase, I., Sugiyama, H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  22. High-dose melphalan, etoposide, and carboplatin followed by autologous stem-cell rescue in pediatric high-risk recurrent Wilms' tumor: a French Society of Pediatric Oncology study. Pein, F., Michon, J., Valteau-Couanet, D., Quintana, E., Frappaz, D., Vannier, J.P., Philip, T., Bergeron, C., Baranzelli, M.C., Thyss, A., Stephan, J.L., Boutard, P., Gentet, J.C., Zucker, J.M., Tournade, M.F., Hartmann, O. J. Clin. Oncol. (1998) [Pubmed]
  23. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Hsu, H.C., Cheng, W., Lai, P.L. Cancer Res. (1997) [Pubmed]
  24. Pre-pattern in the pronephric kidney field of zebrafish. Serluca, F.C., Fishman, M.C. Development (2001) [Pubmed]
  25. Deregulation of common genes by c-Myc and its direct target, MT-MC1. Rogulski, K.R., Cohen, D.E., Corcoran, D.L., Benos, P.V., Prochownik, E.V. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  26. BASP1 is a transcriptional cosuppressor for the Wilms' tumor suppressor protein WT1. Carpenter, B., Hill, K.J., Charalambous, M., Wagner, K.J., Lahiri, D., James, D.I., Andersen, J.S., Schumacher, V., Royer-Pokora, B., Mann, M., Ward, A., Roberts, S.G. Mol. Cell. Biol. (2004) [Pubmed]
  27. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Lundin, M., Nehlin, J.O., Ronne, H. Mol. Cell. Biol. (1994) [Pubmed]
  28. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Weksberg, R., Nishikawa, J., Caluseriu, O., Fei, Y.L., Shuman, C., Wei, C., Steele, L., Cameron, J., Smith, A., Ambus, I., Li, M., Ray, P.N., Sadowski, P., Squire, J. Hum. Mol. Genet. (2001) [Pubmed]
  29. Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for miR-562. Drake, K.M., Ruteshouser, E.C., Natrajan, R., Harbor, P., Wegert, J., Gessler, M., Pritchard-Jones, K., Grundy, P., Dome, J., Huff, V., Jones, C., Aldred, M.A. Clin. Cancer Res. (2009) [Pubmed]
  30. Insulin-like growth factor II and WT1 transcript localization in human fetal kidney and Wilms' tumor. Yun, K., Fidler, A.E., Eccles, M.R., Reeve, A.E. Cancer Res. (1993) [Pubmed]
  31. Older age is an adverse prognostic factor in stage I, favorable histology Wilms' tumor treated with vincristine monochemotherapy: a study by the United Kingdom Children's Cancer Study Group, Wilm's Tumor Working Group. Pritchard-Jones, K., Kelsey, A., Vujanic, G., Imeson, J., Hutton, C., Mitchell, C. J. Clin. Oncol. (2003) [Pubmed]
  32. Inhibition of cyclooxygenase-2 disrupts tumor vascular mural cell recruitment and survival signaling. Lee, A., Frischer, J., Serur, A., Huang, J., Bae, J.O., Kornfield, Z.N., Eljuga, L., Shawber, C.J., Feirt, N., Mansukhani, M., Stempak, D., Baruchel, S., Bender, J.G., Kandel, J.J., Yamashiro, D.J. Cancer Res. (2006) [Pubmed]
  33. Molecular cloning of the cDNA and chromosome localization of the gene for human ubiquitin-conjugating enzyme 9. Wang, Z.Y., Qiu, Q.Q., Seufert, W., Taguchi, T., Testa, J.R., Whitmore, S.A., Callen, D.F., Welsh, D., Shenk, T., Deuel, T.F. J. Biol. Chem. (1996) [Pubmed]
WikiGenes - Universities