The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

H19  -  H19, imprinted maternally expressed...

Homo sapiens

Synonyms: ASM, ASM1, BWS, D11S813E, LINC00008, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of H19


High impact information on H19

  • Finally, the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells [5].
  • This epigenetic defect is associated with, and probably responsible for, relaxation of imprinting and biallelic expression of H19 and downregulation of IGF2 [6].
  • During prolonged passage, one cell line became biallelic with respect to H19, but without loss of the gametic methylation imprint [7].
  • 5. Here we show that inherited microdeletions in the H19 differentially methylated region (DMR) that abolish two CTCF target sites cause this disease [1].
  • The promoter region of H19 is hypomethylated at all stages of placental development, while the 3' portion shows progressive methylation of the paternal allele with gestation [8].

Chemical compound and disease context of H19

  • We examined 18 fresh-frozen (FF) breast tumors with their adjacent normal breast tissue and 14 sets of paraffin-embedded formalin-fixed tissues for IGF2 and H19 gene expression and imprinting [9].
  • A prominent feature was the frequent isolation of sorbitol-fermenting, VT2-producing E. coli O 157.H-.VT1 (C600/H19) was neutralized by 9%, and VT2 (C600/933W) by 99% of the initial serum samples from E+ patients, compared to 3% (VT1) and 100% (VT2) from age-related controls [10].
  • Syn dimeric N-benzyl 4-aryl-1,4-dihydropyridine H19 is a nonpeptidic HIV-1 protease inhibitor of the dihydroxyethylene type representing novel C2-symmetric inhibitors [11].

Biological context of H19

  • Methylation of the H19 gene was normal in both the BWS and KTWS probands [12].
  • In agreement with the loss of the maternal chromosome, the level of expression of a maternally expressed tumor suppressor gene, H19, was greatly reduced compared to the level of expression of the paternally expressed growth promoter gene, IGF2 [13].
  • Previous studies have demonstrated biallelic expression of the imprinted genes H19 and IGF2 and loss of DNA methylation of the SNRPN gene, indicating a common precursor cell of human germ cell tumors (GCTs), namely, the primordial germ cell (PGC) [14].
  • Inversely, in the group of tumors that showed no H19 gene expression, 5 out of 24 were T2 and only 1 presented regional recurrence [2].
  • Neither LOH nor LOI of H19 was observed [3].

Anatomical context of H19


Associations of H19 with chemical compounds

  • Our results suggest that the combined effects of the H19/IGF2-imprinting center microdeletion and 11p15 chromosome duplication were necessary for manifestation of BWS [18].
  • Using a bromodeoxyuridine incorporation method to detect replicated DNA, we studied allele-specific replication of several sites within the human Prader-Willi/Angelman and IGF2/H19 imprinted regions [19].
  • H19 imprinting was maintained in all 18 informative fresh-frozen and paraffin-embedded formalin-fixed samples [9].
  • Study of the independent Cambridge birth cohort with available DNA in mothers (N = 646) provided additional support for mother's H19 2992 genotype associations with birthweight (P = 0.04) and with mother's glucose levels (P = 0.01) in first pregnancies [20].
  • RA-5-1 cells exhibit four- to sixfold less of the mRNAs encoding two visceral endoderm proteins, AFP and H19, than wild-type F9 cells after RA treatment of RA-5-1 aggregates [21].

Physical interactions of H19


Regulatory relationships of H19


Other interactions of H19

  • Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS [28].
  • Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions [29].
  • Gonadal and nongonadal germ cell tumors are derived from primordial germ cells that have consistently lost the imprinting of SNRPN and partly lost imprinting of H19 and IGF-2 [30].
  • This showed a significantly higher frequency of exomphalos in the CDKN1C mutation cases (11/13) than in patients with an imprinting centre defect (associated with biallelic IGF2 expression and H19 silencing) (0/5, p<0.005) or patients with uniparental disomy (0/9, p<0.005) [31].
  • In a marked contrast with H19, two others CD59 mAb, YTH 53.1 and MEM 43, which react with a different epitope on CD59, led to a 50%-70% increase of the number of cells forming rosettes [32].

Analytical, diagnostic and therapeutic context of H19


  1. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Sparago, A., Cerrato, F., Vernucci, M., Ferrero, G.B., Silengo, M.C., Riccio, A. Nat. Genet. (2004) [Pubmed]
  2. DNA methylation in the CTCF-binding site I and the expression pattern of the H19 gene: does positive expression predict poor prognosis in early stage head and neck carcinomas? Esteves, L.I., Javaroni, A.C., Nishimoto, I.N., Magrin, J., Squire, J.A., Kowalski, L.P., Rainho, C.A., Rogatto, S.R. Mol. Carcinog. (2005) [Pubmed]
  3. Loss of imprinting of long QT intronic transcript 1 in colorectal cancer. Tanaka, K., Shiota, G., Meguro, M., Mitsuya, K., Oshimura, M., Kawasaki, H. Oncology (2001) [Pubmed]
  4. Down-regulation of the IGF-2/H19 locus during normal and malignant hematopoiesis is independent of the imprinting pattern. Tessema, M., Länger, F., Bock, O., Seltsam, A., Metzig, K., Hasemeier, B., Kreipe, H., Lehmann, U. Int. J. Oncol. (2005) [Pubmed]
  5. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Zhao, Z., Tavoosidana, G., Sj??linder, M., G??nd??r, A., Mariano, P., Wang, S., Kanduri, C., Lezcano, M., Singh Sandhu, K., Singh, U., Pant, V., Tiwari, V., Kurukuti, S., Ohlsson, R. Nat. Genet. (2006) [Pubmed]
  6. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Gicquel, C., Rossignol, S., Cabrol, S., Houang, M., Steunou, V., Barbu, V., Danton, F., Thibaud, N., Le Merrer, M., Burglen, L., Bertrand, A.M., Netchine, I., Le Bouc, Y. Nat. Genet. (2005) [Pubmed]
  7. Epigenetic status of human embryonic stem cells. Rugg-Gunn, P.J., Ferguson-Smith, A.C., Pedersen, R.A. Nat. Genet. (2005) [Pubmed]
  8. Establishment of functional imprinting of the H19 gene in human developing placentae. Jinno, Y., Ikeda, Y., Yun, K., Maw, M., Masuzaki, H., Fukuda, H., Inuzuka, K., Fujishita, A., Ohtani, Y., Okimoto, T. Nat. Genet. (1995) [Pubmed]
  9. Imprinting and expression of insulin-like growth factor-II and H19 in normal breast tissue and breast tumor. Yballe, C.M., Vu, T.H., Hoffman, A.R. J. Clin. Endocrinol. Metab. (1996) [Pubmed]
  10. The role of Escherichia coli O 157 infections in the classical (enteropathic) haemolytic uraemic syndrome: results of a Central European, multicentre study. Bitzan, M., Ludwig, K., Klemt, M., König, H., Büren, J., Müller-Wiefel, D.E. Epidemiol. Infect. (1993) [Pubmed]
  11. Bioanalysis of syn dimeric HIV-1 protease inhibitor N-benzyl 4-aryl-1,4-dihydropyridine H19: metabolic and cytotoxic properties in Hep G2 cells. Hilgeroth, A., Langner, A. Arch. Pharm. (Weinheim) (2000) [Pubmed]
  12. Relaxation of insulin-like growth factor 2 imprinting and discordant methylation at KvDMR1 in two first cousins affected by Beckwith-Wiedemann and Klippel-Trenaunay-Weber syndromes. Sperandeo, M.P., Ungaro, P., Vernucci, M., Pedone, P.V., Cerrato, F., Perone, L., Casola, S., Cubellis, M.V., Bruni, C.B., Andria, G., Sebastio, G., Riccio, A. Am. J. Hum. Genet. (2000) [Pubmed]
  13. Unbalanced expression of 11p15 imprinted genes in focal forms of congenital hyperinsulinism: association with a reduction to homozygosity of a mutation in ABCC8 or KCNJ11. Fournet, J.C., Mayaud, C., de Lonlay, P., Gross-Morand, M.S., Verkarre, V., Castanet, M., Devillers, M., Rahier, J., Brunelle, F., Robert, J.J., Nihoul-Fékété, C., Saudubray, J.M., Junien, C. Am. J. Pathol. (2001) [Pubmed]
  14. IGF2/H19 imprinting analysis of human germ cell tumors (GCTs) using the methylation-sensitive single-nucleotide primer extension method reflects the origin of GCTs in different stages of primordial germ cell development. Sievers, S., Alemazkour, K., Zahn, S., Perlman, E.J., Gillis, A.J., Looijenga, L.H., Göbel, U., Schneider, D.T. Genes Chromosomes Cancer (2005) [Pubmed]
  15. An extended region of biallelic gene expression and rodent-human synteny downstream of the imprinted H19 gene on chromosome 11p15.5. Yuan, L., Qian, N., Tycko, B. Hum. Mol. Genet. (1996) [Pubmed]
  16. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Wevrick, R., Kerns, J.A., Francke, U. Hum. Mol. Genet. (1994) [Pubmed]
  17. Large scale mapping of methylcytosines in CTCF-binding sites in the human H19 promoter and aberrant hypomethylation in human bladder cancer. Takai, D., Gonzales, F.A., Tsai, Y.C., Thayer, M.J., Jones, P.A. Hum. Mol. Genet. (2001) [Pubmed]
  18. Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms' tumor. Prawitt, D., Enklaar, T., Gärtner-Rupprecht, B., Spangenberg, C., Oswald, M., Lausch, E., Schmidtke, P., Reutzel, D., Fees, S., Lucito, R., Korzon, M., Brozek, I., Limon, J., Housman, D.E., Pelletier, J., Zabel, B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  19. Allele-specific replication timing in imprinted domains: absence of asynchrony at several loci. Kawame, H., Gartler, S.M., Hansen, R.S. Hum. Mol. Genet. (1995) [Pubmed]
  20. Common polymorphism in H19 associated with birthweight and cord blood IGF-II levels in humans. Petry, C.J., Ong, K.K., Barratt, B.J., Wingate, D., Cordell, H.J., Ring, S.M., Pembrey, M.E., Reik, W., Todd, J.A., Dunger, D.B. BMC Genet. (2005) [Pubmed]
  21. Gene expression in visceral endoderm: a comparison of mutant and wild-type F9 embryonal carcinoma cell differentiation. Rogers, M.B., Watkins, S.C., Gudas, L.J. J. Cell Biol. (1990) [Pubmed]
  22. Loss of imprinting in hepatoblastoma. Rainier, S., Dobry, C.J., Feinberg, A.P. Cancer Res. (1995) [Pubmed]
  23. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Taniguchi, T., Sullivan, M.J., Ogawa, O., Reeve, A.E. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  24. High frequency of inactivation of the imprinted H19 gene in "sporadic" hepatoblastoma. Fukuzawa, R., Umezawa, A., Ochi, K., Urano, F., Ikeda, H., Hata, J. Int. J. Cancer (1999) [Pubmed]
  25. Cross-talk between mesenchyme and epithelium increases H19 gene expression during scattering and morphogenesis of epithelial cells. Adriaenssens, E., Lottin, S., Berteaux, N., Hornez, L., Fauquette, W., Fafeur, V., Peyrat, J.P., Le Bourhis, X., Hondermarck, H., Coll, J., Dugimont, T., Curgy, J.J. Exp. Cell Res. (2002) [Pubmed]
  26. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Engel, N., Thorvaldsen, J.L., Bartolomei, M.S. Hum. Mol. Genet. (2006) [Pubmed]
  27. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. Berteaux, N., Lottin, S., Monté, D., Pinte, S., Quatannens, B., Coll, J., Hondermarck, H., Curgy, J.J., Dugimont, T., Adriaenssens, E. J. Biol. Chem. (2005) [Pubmed]
  28. Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS. Bliek, J., Maas, S.M., Ruijter, J.M., Hennekam, R.C., Alders, M., Westerveld, A., Mannens, M.M. Hum. Mol. Genet. (2001) [Pubmed]
  29. Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions. Sandovici, I., Leppert, M., Hawk, P.R., Suarez, A., Linares, Y., Sapienza, C. Hum. Mol. Genet. (2003) [Pubmed]
  30. Multipoint imprinting analysis indicates a common precursor cell for gonadal and nongonadal pediatric germ cell tumors. Schneider, D.T., Schuster, A.E., Fritsch, M.K., Hu, J., Olson, T., Lauer, S., Göbel, U., Perlman, E.J. Cancer Res. (2001) [Pubmed]
  31. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. Lam, W.W., Hatada, I., Ohishi, S., Mukai, T., Joyce, J.A., Cole, T.R., Donnai, D., Reik, W., Schofield, P.N., Maher, E.R. J. Med. Genet. (1999) [Pubmed]
  32. CD59 molecule: a second ligand for CD2 in T cell adhesion. Deckert, M., Kubar, J., Zoccola, D., Bernard-Pomier, G., Angelisova, P., Horejsi, V., Bernard, A. Eur. J. Immunol. (1992) [Pubmed]
  33. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Heijmans, B.T., Kremer, D., Tobi, E.W., Boomsma, D.I., Slagboom, P.E. Hum. Mol. Genet. (2007) [Pubmed]
  34. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Barsyte-Lovejoy, D., Lau, S.K., Boutros, P.C., Khosravi, F., Jurisica, I., Andrulis, I.L., Tsao, M.S., Penn, L.Z. Cancer Res. (2006) [Pubmed]
  35. Detection of oncofetal h19 RNA in rheumatoid arthritis synovial tissue. Stuhlmüller, B., Kunisch, E., Franz, J., Martinez-Gamboa, L., Hernandez, M.M., Pruss, A., Ulbrich, N., Erdmann, V.A., Burmester, G.R., Kinne, R.W. Am. J. Pathol. (2003) [Pubmed]
  36. Decreased expression of p57(KIP2)mRNA in human bladder cancer. Oya, M., Schulz, W.A. Br. J. Cancer (2000) [Pubmed]
WikiGenes - Universities