The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Microcystis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Microcystis

  • In the present study we characterize the inhibitory effects of microcystin-LR, a hepatotoxic cyclic peptide associated with most strains of the blue-green algae Microcystis aeruginosa found in the Northern hemisphere, that proves to be a potent inhibitor of type 1 (IC50 = 1.7 nM) and type 2A (IC50 = 0.04 nM) protein phosphatases [1].
  • Characteristics of DNA and multiple rpoD homologs of Microcystis (Synechocystis) strains [2].
  • The divergent tRNA(Leu)(UAA) intron is sporadically distributed both within the Nostoc and the Microcystis radiations [3].
  • Dihydro derivatives of nodularin (1) and microcystin-LR (4), potent cyclic peptide hepatotoxins isolated from Nodularia spumigena and Microcystis aeruginosa, respectively, were prepared by sodium borohydride reduction of the dehydroamino acid residues [4].
  • [structure: see text] Nostocarboline and seven derivatives were prepared and displayed minimal inhibitory concentration (MIC) values >or=100 nM against the growth of Microcystis aeruginosa PCC 7806, Synechococcus PCC 6911, and Kirchneriella contorta SAG 11.81, probably via the inhibition of photosynthesis [5].
 

High impact information on Microcystis

  • The structural gene for a putative PPP family protein-serine/threonine phosphatase from the microcystin-producing cyanobacterium Microcystis aeruginosa PCC 7820, pp1-cyano1, was cloned [6].
  • Microcystin, a hepatotoxin that represents a serious health risk for humans and livestock, is produced by the bloom-forming cyanobacterium Microcystis aeruginosa in freshwater bodies worldwide [7].
  • The mcyF gene of the microcystin biosynthetic gene cluster from Microcystis aeruginosa encodes an aspartate racemase [8].
  • Whereas homologues of this glutamate racemase gene are present in all the Microcystis strains examined, mcyF could only be detected in microcystin-producing strains [8].
  • Zooplankton studies with Daphnia galeata and D. pulicaria, using the mutant (MRC) and its' wild type (MRD), showed for the first time that microcystins other than microcystin-LR can be responsible for the poisoning of Daphnia by Microcystis [9].
 

Chemical compound and disease context of Microcystis

  • Nitrate- and phosphate-limited conditions had no effect on toxin production by Microcystis aeruginosa [10].
  • An isolate of Microcystis from blooms in ponds exhibited extremely high resistance to photooxidation, which was abolished by exposure to chloramphenicol [11].
  • Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography [12].
  • Lipopolysaccharides (LPS) of two isolates of Microcystis aeruginosa were extracted with phenol/water and purified [13].
  • It contained erythro-beta-methyl-D-Asp, D-Glu, D-Ala, L-Leu, and L-Arg known to be part of the Microcystis peptide-toxin with Mr 994 [14].
 

Biological context of Microcystis

  • Biomass of total phytoplankton, the abundance of cyanobacteria, the dominance of Microcystis spp. and concentration of nitrate (N) and total phosphorous (P) were the lowest in drinking water bodies and the highest in aesthetic water bodies [15].
  • Spiroidesin inhibited cell growth of the toxic cyanobacterium Microcystis aeruginosa (IC(50), 1.6 x 10(-6) M) [16].
  • The correlation between the content of three microcystins (types LR, RR and YR) and the cell cycle of an axenic strain of Microcystis viridis, NIES-102, was investigated under conditions of high (16 mg L(-1)) and low (1.0 mg L(-1)) nitrate (NO(3)-N) concentrations [17].
 

Anatomical context of Microcystis

 

Gene context of Microcystis

  • The psbA2 gene exhibits light-dependent and rhythmic expression in a unicellular cyanobacterium, Microcystis aeruginosa (Synechocystis) K-81 [21].
  • We performed molecular characterization of the RpoD1 protein encoded by the rpoD1 gene isolated from a cyanobacterium, Microcystis aeruginosa K-81 [22].
  • The psbA2 gene of a unicellular cyanobacterium, Microcystis aeruginosa K-81, encodes a D1 protein homolog in the reaction center of photosynthetic Photosystem II [23].
  • Effects of light on the microcystin content of Microcystis strain PCC 7806 [24].
  • Characterization of a soluble inorganic pyrophosphatase from Microcystis aeruginosa and preparation of its antibody [25].
 

Analytical, diagnostic and therapeutic context of Microcystis

References

  1. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. Honkanen, R.E., Zwiller, J., Moore, R.E., Daily, S.L., Khatra, B.S., Dukelow, M., Boynton, A.L. J. Biol. Chem. (1990) [Pubmed]
  2. Characteristics of DNA and multiple rpoD homologs of Microcystis (Synechocystis) strains. Sakamoto, T., Shirai, M., Asayama, M., Aida, T., Sato, A., Tanaka, K., Takahashi, H., Nakano, M. Int. J. Syst. Bacteriol. (1993) [Pubmed]
  3. Nested evolution of a tRNA(Leu)(UAA) group I intron by both horizontal intron transfer and recombination of the entire tRNA locus. Rudi, K., Fossheim, T., Jakobsen, K.S. J. Bacteriol. (2002) [Pubmed]
  4. Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins. Namikoshi, M., Choi, B.W., Sun, F., Rinehart, K.L., Evans, W.R., Carmichael, W.W. Chem. Res. Toxicol. (1993) [Pubmed]
  5. Potent algicides based on the cyanobacterial alkaloid nostocarboline. Blom, J.F., Brütsch, T., Barbaras, D., Bethuel, Y., Locher, H.H., Hubschwerlen, C., Gademann, K. Org. Lett. (2006) [Pubmed]
  6. Cyanobacterial PPP family protein phosphatases possess multifunctional capabilities and are resistant to microcystin-LR. Shi, L., Carmichael, W.W., Kennelly, P.J. J. Biol. Chem. (1999) [Pubmed]
  7. A mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa. Kehr, J.C., Zilliges, Y., Springer, A., Disney, M.D., Ratner, D.D., Bouchier, C., Seeberger, P.H., de Marsac, N.T., Dittmann, E. Mol. Microbiol. (2006) [Pubmed]
  8. The mcyF gene of the microcystin biosynthetic gene cluster from Microcystis aeruginosa encodes an aspartate racemase. Sielaff, H., Dittmann, E., Tandeau De Marsac, N., Bouchier, C., Von Döhren, H., Börner, T., Schwecke, T. Biochem. J. (2003) [Pubmed]
  9. A spontaneous mutant of microcystin biosynthesis: genetic characterization and effect on Daphnia. Kaebernick, M., Rohrlack, T., Christoffersen, K., Neilan, B.A. Environ. Microbiol. (2001) [Pubmed]
  10. Iron-stimulated toxin production in Microcystis aeruginosa. Utkilen, H., Gjølme, N. Appl. Environ. Microbiol. (1995) [Pubmed]
  11. Photooxidation of cyanobacteria in natural conditions. Eloff, J.N., Steinitz, Y., Shilo, M. Appl. Environ. Microbiol. (1976) [Pubmed]
  12. Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. Chen, F., Li, H.B., Wong, R.N., Ji, B., Jiang, Y. Journal of chromatography. A. (2005) [Pubmed]
  13. Lipopolysaccharides of the cyanobacterium Microcystis aeruginosa. Raziuddin, S., Siegelman, H.W., Tornabene, T.G. Eur. J. Biochem. (1983) [Pubmed]
  14. Nontoxic and toxic oligopeptides with D-amino acids and unusual residues in Microcystis aeruginosa PCC 7806. Birk, I.M., Dierstein, R., Kaiser, I., Matern, U., König, W.A., Krebber, R., Weckesser, J. Arch. Microbiol. (1989) [Pubmed]
  15. Occurrence of toxigenic cyanobacterial blooms in freshwaters of Sri Lanka. Jayatissa, L.P., Silva, E.I., McElhiney, J., Lawton, L.A. Syst. Appl. Microbiol. (2006) [Pubmed]
  16. Spiroidesin, a novel lipopeptide from the cyanobacterium Anabaena spiroides that inhibits cell growth of the cyanobacterium Microcystis aeruginosa. Kaya, K., Mahakhant, A., Keovara, L., Sano, T., Kubo, T., Takagi, H. J. Nat. Prod. (2002) [Pubmed]
  17. Characteristics of microcystin production in the cell cycle of Microcystis viridis. Kameyama, K., Sugiura, N., Inamori, Y., Maekawa, T. Environ. Toxicol. (2004) [Pubmed]
  18. Rapid microfilament reorganization induced in isolated rat hepatocytes by microcystin-LR, a cyclic peptide toxin. Eriksson, J.E., Paatero, G.I., Meriluoto, J.A., Codd, G.A., Kass, G.E., Nicotera, P., Orrenius, S. Exp. Cell Res. (1989) [Pubmed]
  19. Comparison of in vivo and in vitro toxic effects of microcystin-LR in fasted rats. Miura, G.A., Robinson, N.A., Geisbert, T.W., Bostian, K.A., White, J.D., Pace, J.G. Toxicon (1989) [Pubmed]
  20. Enzyme-linked immunosorbent assay detection of microcystins using new monoclonal antibodies. Pyo, D., Lee, J., Choi, E. Journal of immunoassay & immunochemistry. (2004) [Pubmed]
  21. Light-dependent and rhythmic psbA transcripts in homologous/heterologous cyanobacterial cells. Agrawal, G.K., Asayama, M., Shirai, M. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  22. The rpoD1 gene product is a principal sigma factor of RNA polymerase in Microcystis aeruginosa K-81. Asayama, M., Suzuki, H., Sato, A., Aida, T., Tanaka, K., Takahashi, H., Shirai, M. J. Biochem. (1996) [Pubmed]
  23. An AU-box motif upstream of the SD sequence of light-dependent psbA transcripts confers mRNA instability in darkness in cyanobacteria. Agrawal, G.K., Kato, H., Asayama, M., Shirai, M. Nucleic Acids Res. (2001) [Pubmed]
  24. Effects of light on the microcystin content of Microcystis strain PCC 7806. Wiedner, C., Visser, P.M., Fastner, J., Metcalf, J.S., Codd, G.A., Mur, L.R. Appl. Environ. Microbiol. (2003) [Pubmed]
  25. Characterization of a soluble inorganic pyrophosphatase from Microcystis aeruginosa and preparation of its antibody. Kang, C.B., Ho, K.K. Arch. Biochem. Biophys. (1991) [Pubmed]
  26. The peptide toxin of the cyanobacterium Microcystis aeruginosa PCC 7941. Isolation and analysis by nuclear magnetic resonance and fast atom bombardment mass spectroscopy. Birk, I.M., Matern, U., Kaiser, I., Martin, C., Weckesser, J. J. Chromatogr. (1988) [Pubmed]
  27. Detection and quantification of microcystins (cyanobacterial hepatotoxins) with recombinant antibody fragments isolated from a naïve human phage display library. McElhiney, J., Lawton, L.A., Porter, A.J. FEMS Microbiol. Lett. (2000) [Pubmed]
  28. Biliary excretion of biochemically active cyanobacteria (blue-green algae) hepatotoxins in fish. Sahin, A., Tencalla, F.G., Dietrich, D.R., Naegeli, H. Toxicology (1996) [Pubmed]
 
WikiGenes - Universities