The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tibial Fractures

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tibial Fractures

 

High impact information on Tibial Fractures

 

Chemical compound and disease context of Tibial Fractures

 

Anatomical context of Tibial Fractures

 

Gene context of Tibial Fractures

 

Analytical, diagnostic and therapeutic context of Tibial Fractures

  • Collectively, these data support the hypotheses that the distal tibial fracture model simulates CRPS, immobilization alone can generate a syndrome resembling CRPS, and substance P signaling contributes to the vascular and nociceptive changes observed in these models [1].
  • METHODS: Rats were either infused with a liquid diet with or without ethanol (antagonist studies) or given rat chow (recombinant studies) and underwent tibial fractures stabilized with external fixators for DO [23].
  • The electrical induction of callus formation and external skeletal fixation using methyl methacrylate for delayed union of open tibial fracture with segmental loss [24].

References

  1. Substance P signaling contributes to the vascular and nociceptive abnormalities observed in a tibial fracture rat model of complex regional pain syndrome type I. Guo, T.Z., Offley, S.C., Boyd, E.A., Jacobs, C.R., Kingery, W.S. Pain (2004) [Pubmed]
  2. Evaluation of biodegradable cefazolin sodium microspheres for the prevention of infection in rabbits with experimental open tibial fractures stabilized with internal fixation. Jacob, E., Cierny, G., Fallon, M.T., McNeill, J.F., Siderys, G.S. J. Orthop. Res. (1993) [Pubmed]
  3. The effect of hemorrhagic shock in a caprine tibial fracture model. Starr, A.J., Welch, R.D., Eastridge, B.J., Pierce, W., Zhang, H. Journal of orthopaedic trauma. (2002) [Pubmed]
  4. Fat embolism and the fat embolism syndrome. A double-blind therapeutic study. Lindeque, B.G., Schoeman, H.S., Dommisse, G.F., Boeyens, M.C., Vlok, A.L. The Journal of bone and joint surgery. British volume. (1987) [Pubmed]
  5. Unreamed nailing of tibial fractures with the solid tibial nail. Greitbauer, M., Heinz, T., Gaebler, C., Stoik, W., Vécsei, V. Clin. Orthop. Relat. Res. (1998) [Pubmed]
  6. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. Andreassen, T.T., Ejersted, C., Oxlund, H. J. Bone Miner. Res. (1999) [Pubmed]
  7. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. Nakamura, T., Hara, Y., Tagawa, M., Tamura, M., Yuge, T., Fukuda, H., Nigi, H. J. Bone Miner. Res. (1998) [Pubmed]
  8. Effect of recombinant human bone morphogenetic protein-2 on fracture healing in a goat tibial fracture model. Welch, R.D., Jones, A.L., Bucholz, R.W., Reinert, C.M., Tjia, J.S., Pierce, W.A., Wozney, J.M., Li, X.J. J. Bone Miner. Res. (1998) [Pubmed]
  9. Three-fold induction of renal 25-hydroxyvitamin D3-24-hydroxylase activity and increased serum 24,25-dihydroxyvitamin D3 levels are correlated with the healing process after chick tibial fracture. Seo, E.G., Norman, A.W. J. Bone Miner. Res. (1997) [Pubmed]
  10. Expression of insulin-like growth factor I messenger ribonucleic acid in regenerating bone after fracture: influence of indomethacin. Edwall, D., Prisell, P.T., Levinovitz, A., Jennische, E., Norstedt, G. J. Bone Miner. Res. (1992) [Pubmed]
  11. 24R,25-dihydroxyvitamin D3: an essential vitamin D3 metabolite for both normal bone integrity and healing of tibial fracture in chicks. Seo, E.G., Einhorn, T.A., Norman, A.W. Endocrinology (1997) [Pubmed]
  12. Skeletal uptake of 99mTc-diphosphonate in relation to local bone blood flow. Siegel, B.A., Donovan, R.L., Alderson, P.O., Mack, G.R. Radiology. (1976) [Pubmed]
  13. Interleukin-1 and tumor necrosis factor antagonists attenuate ethanol-induced inhibition of bone formation in a rat model of distraction osteogenesis. Perrien, D.S., Brown, E.C., Fletcher, T.W., Irby, D.J., Aronson, J., Gao, G.G., Skinner, R.A., Hogue, W.R., Feige, U., Suva, L.J., Ronis, M.J., Badger, T.M., Lumpkin, C.K. J. Pharmacol. Exp. Ther. (2002) [Pubmed]
  14. Anti-infective efficacy of antiseptic-coated intramedullary nails. Darouiche, R.O., Farmer, J., Chaput, C., Mansouri, M., Saleh, G., Landon, G.C. The Journal of bone and joint surgery. American volume. (1998) [Pubmed]
  15. Should insertion of intramedullary nails for tibial fractures be with or without reaming? A prospective, randomized study with 3.8 years' follow-up. Larsen, L.B., Madsen, J.E., Høiness, P.R., Øvre, S. Journal of orthopaedic trauma. (2004) [Pubmed]
  16. Calcitonin and fracture healing. An experimental study on rats. Paavolainen, P., Taivainen, T., Michelsson, J.E., Lalla, M., Penttinen, R. J. Orthop. Res. (1989) [Pubmed]
  17. Simultaneous rupture of the tibialis posterior and flexor digitorum longus tendons in a closed tibial fracture. Korovessis, P., Spastris, P., Katsardis, T., Sidiropoulos, P. Journal of orthopaedic trauma. (1991) [Pubmed]
  18. Mepe is expressed during skeletal development and regeneration. Lu, C., Huang, S., Miclau, T., Helms, J.A., Colnot, C. Histochem. Cell Biol. (2004) [Pubmed]
  19. Retarded chondrogenesis in transgenic mice with a type II collagen defect results in fracture healing abnormalities. Hiltunen, A., Metsäranta, M., Virolainen, P., Aro, H.T., Vuorio, E. Dev. Dyn. (1994) [Pubmed]
  20. Expression of extracellular matrix genes: transforming growth factor (TGF)-beta1 and ras in tibial fracture healing of lathyritic rats. Ekholm, E.C., Ravanti, L., Kähäri, V., Paavolainen, P., Penttinen, R.P. Bone (2000) [Pubmed]
  21. Serum ionised calcium and its relationship to parathyroid hormone after tibial fracture. Hardy, J.R., Conlan, D., Hay, S., Gregg, P.J. The Journal of bone and joint surgery. British volume. (1993) [Pubmed]
  22. Elevated intramuscular compartment pressures do not influence outcome after tibial fracture. White, T.O., Howell, G.E., Will, E.M., Court-Brown, C.M., McQueen, M.M. The Journal of trauma. (2003) [Pubmed]
  23. Ethanol-induced inhibition of bone formation in a rat model of distraction osteogenesis: a role for the tumor necrosis factor signaling axis. Wahl, E.C., Perrien, D.S., Aronson, J., Liu, Z., Fletcher, T.W., Skinner, R.A., Feige, U., Suva, L.J., Badger, T.M., Lumpkin, C.K. Alcohol. Clin. Exp. Res. (2005) [Pubmed]
  24. The electrical induction of callus formation and external skeletal fixation using methyl methacrylate for delayed union of open tibial fracture with segmental loss. Inoue, S., Ohashi, T., Imai, R., Ichida, M., Yasuda, I. Clin. Orthop. Relat. Res. (1977) [Pubmed]
 
WikiGenes - Universities