The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cerebral Veins

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cerebral Veins

 

High impact information on Cerebral Veins

  • Sumatriptan (0.01-10 microM), when microinjected perivascularly, caused a decrease in pial artery diameter (maximum change of -19 +/- 9%; mean +/- SD) but had no effect on the diameter of pial veins [6].
  • In unrelated subjects the doses of norepinephrine constricting basal vein diameter by 50% (ED50) ranged from 3.9 to 120.5 ng/min [7].
  • In the cerebral veins, the abundant SP fibers innervated the cortical veins, deep cerebral veins, and dural sinuses [8].
  • The concentration of endothelin inducing half-maximal response was in the nanomolar range, with pial veins being slightly more sensitive to the peptide than pial arterioles [9].
  • The formation of platelet thrombi after occlusion was significantly (p less than 0.05) inhibited in the pial veins of cilostazol-treated compared with solvent-treated cats [10].
 

Biological context of Cerebral Veins

 

Anatomical context of Cerebral Veins

 

Associations of Cerebral Veins with chemical compounds

 

Gene context of Cerebral Veins

 

Analytical, diagnostic and therapeutic context of Cerebral Veins

  • The pial veins of solvent-treated cats showed significant (p less than 0.05) constriction during occlusion, whereas cilostazol-treated cats exhibited only mild constriction of the pial veins [10].
  • Therefore, the present study was designed to determine if the 5-HT-mediated inhibition of RC in pial veins is mediated by 5-HT(7) receptors and if 5-HT(7) receptor mRNA is expressed in endothelium-denuded pial veins; the study was done with the use of an in vitro tissue bath and RT-PCR techniques [21].
  • In Group A (n = 10), one dorsal cerebral vein was occluded; in Group B (n = 10), two adjacent dorsal cerebral veins were occluded; and in a sham-operated group (n = 5), the rats also underwent craniotomy and light exposure but received injections of saline rather than the rose bengal dye [26].

References

  1. Efficacy of retrograde perfusion of the cerebral vein with verapamil after focal ischemia in rat brain. Hosaka, T., Yamamoto, Y.L., Diksic, M. Stroke (1991) [Pubmed]
  2. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Bederson, J.B., Pitts, L.H., Tsuji, M., Nishimura, M.C., Davis, R.L., Bartkowski, H. Stroke (1986) [Pubmed]
  3. Vein of Galen malformation: diagnosis and management. Johnston, I.H., Whittle, I.R., Besser, M., Morgan, M.K. Neurosurgery (1987) [Pubmed]
  4. Prothrombin 20210A and oral contraceptive use as risk factors for cerebral venous thrombosis. Gadelha, T., André, C., Jucá, A.A., Nucci, M. Cerebrovasc. Dis. (2005) [Pubmed]
  5. Thrombolytic therapy: current clinical practice. Baker, W.F. Hematol. Oncol. Clin. North Am. (2005) [Pubmed]
  6. Effect of sumatriptan, a selective 5-HT1-like receptor agonist, on pial vessel diameter in anaesthetised cats. Connor, H.E., Stubbs, C.M., Feniuk, W., Humphrey, P.P. J. Cereb. Blood Flow Metab. (1992) [Pubmed]
  7. Genetic aspects of variability in superficial vein responsiveness to norepinephrine. Luthra, A., Borkowski, K.R., Carruthers, S.G. Clin. Pharmacol. Ther. (1991) [Pubmed]
  8. Peptidergic innervation in the cerebral blood vessels of the guinea pig: an immunohistochemical study. Nakakita, K. J. Cereb. Blood Flow Metab. (1990) [Pubmed]
  9. Contractile responses to endothelin in feline cortical vessels in situ. Robinson, M.J., McCulloch, J. J. Cereb. Blood Flow Metab. (1990) [Pubmed]
  10. Effects of a selective inhibitor of cyclic AMP phosphodiesterase on the pial microcirculation in feline cerebral ischemia. Tanaka, K., Gotoh, F., Fukuuchi, Y., Amano, T., Uematsu, D., Kawamura, J., Yamawaki, T., Itoh, N., Obara, K., Muramatsu, K. Stroke (1989) [Pubmed]
  11. Nitric oxide is the predominant mediator for neurogenic vasodilation in porcine pial veins. Ishine, T., Yu, J.G., Asada, Y., Lee, T.J. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  12. Dural sinus thrombosis in paroxysmal nocturnal hemoglobinuria. Donhowe, S.P., Lazaro, R.P. Clinical neurology and neurosurgery. (1984) [Pubmed]
  13. Transvenous perfusion of the brain with verapamil during focal cerebral ischemia in rats. Ueda, T., Yamamoto, Y.L., Diksic, M. Stroke (1989) [Pubmed]
  14. Innervation of the cerebral veins as compared with the cerebral arteries: a histochemical and electron microscopic study. Nakakita, K., Imai, H., Kamei, I., Naka, Y., Nakai, K., Itakura, T., Komai, N. J. Cereb. Blood Flow Metab. (1983) [Pubmed]
  15. Selective damage to the cerebellar vermis in chronic alcoholism: a contribution from neurotoxicology to an old problem of selective vulnerability. Cavanagh, J.B., Holton, J.L., Nolan, C.C. Neuropathol. Appl. Neurobiol. (1997) [Pubmed]
  16. CYP1A1 and CYP1B1 in blood-brain interfaces: CYP1A1-dependent bioactivation of 7,12-dimethylbenz(a)anthracene in endothelial cells. Granberg, L., Ostergren, A., Brandt, I., Brittebo, E.B. Drug Metab. Dispos. (2003) [Pubmed]
  17. L-citrulline conversion to L-arginine in sphenopalatine ganglia and cerebral perivascular nerves in the pig. Yu, J.G., Ishine, T., Kimura, T., O'Brien, W.E., Lee, T.J. Am. J. Physiol. (1997) [Pubmed]
  18. Cerebral circulation and histamine: 2. Responses of pial veins and arterioles to receptor agonists. Gross, P.M., Harper, A.M., Teasdale, G.M. J. Cereb. Blood Flow Metab. (1981) [Pubmed]
  19. In vivo effects of alpha-adrenoceptor agonists and antagonists on pial veins of cats. Ulrich, K., Kuschinsky, W. Stroke (1985) [Pubmed]
  20. Effect of topical nimodipine versus its ethanol-containing vehicle on cat pial arteries. Auer, L.M., Mokry, M. Stroke (1986) [Pubmed]
  21. Serotonin 5-HT(7) receptors mediate relaxation of porcine pial veins. Ishine, T., Bouchelet, I., Hamel, E., Lee, T.J. Am. J. Physiol. Heart Circ. Physiol. (2000) [Pubmed]
  22. Cerebral sinus thrombosis in a patient with hereditary protein S deficiency: case report and review of the literature. Heistinger, M., Rumpl, E., Illiasch, H., Türck, H., Kyrle, P.A., Lechner, K., Pabinger, I. Ann. Hematol. (1992) [Pubmed]
  23. Thrombosis of the deep cerebral veins with excessive bilateral infarction in a premature infant with the thrombogenic 4G/4G genotype of the plasminogen activator inhibitor-1. Baumeister, F.A., Auberger, K., Schneider, K. Eur. J. Pediatr. (2000) [Pubmed]
  24. Deep cerebral venous thrombosis and hereditary tissue plasminogen activator (t-PA) deficiency. Tezzon, F., Ferrari, G., Sbarbaro, V., Beltramello, A., Arigliano, P.L., Negri, M. Italian journal of neurological sciences. (1994) [Pubmed]
  25. Reduced venous responsiveness to endothelin-1 but not noradrenaline in hypertensive chronic renal failure. Hand, M.F., Haynes, W.G., Webb, D.J. Nephrol. Dial. Transplant. (2001) [Pubmed]
  26. Use of local cerebral blood flow monitoring to predict brain damage after disturbance to the venous circulation: cortical vein occlusion model by photochemical dye. Nakase, H., Kakizaki, T., Miyamoto, K., Hiramatsu, K., Sakaki, T. Neurosurgery (1995) [Pubmed]
 
WikiGenes - Universities