The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cerebral Arteries

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cerebral Arteries

 

High impact information on Cerebral Arteries

  • In addition, some authors have observed that cerebral arteries (such as the vertebrobasilar system of the rabbit) and microvessels may take up serotonin and 5-hydroxytryptophan in various species [6].
  • In vitro pharmacological studies demonstrated that exogenously applied vasoactive intestinal polypeptide (VIP) relaxes the smooth muscle cells of cat cerebral arteries, whereas substance P constricts them [7].
  • Specific receptors for PCP, which subserve contraction and differ from those for LSD and mescaline, are found in cerebral arteries [1].
  • Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant disorder in which a cysteine proteinase inhibitor, cystatin C, is deposited as amyloid fibrils in the cerebral arteries of patients and leads to massive brain haemorrhage and death in young adults [8].
  • In this review, Andrew Parsons analyses the evidence demonstrating contractile and relaxant 5-HT receptors within different areas of the cerebrovasculature, and examines differences between human and animal cerebral arteries [9].
 

Chemical compound and disease context of Cerebral Arteries

 

Biological context of Cerebral Arteries

 

Anatomical context of Cerebral Arteries

 

Associations of Cerebral Arteries with chemical compounds

 

Gene context of Cerebral Arteries

 

Analytical, diagnostic and therapeutic context of Cerebral Arteries

References

  1. Phencyclidine, lysergic acid diethylamide, and mescaline: cerebral artery spasms and hallucinogenic activity. Altura, B.T., Altura, B.M. Science (1981) [Pubmed]
  2. Stroke in hemoglobin (SD) sickle cell disease with moyamoya: successful hydroxyurea treatment after cerebrovascular bypass surgery. Schmugge, M., Frischknecht, H., Yonekawa, Y., Baumgartner, R.W., Boltshauser, E., Humbert, J. Blood (2001) [Pubmed]
  3. Spontaneous dissection of the cervical internal carotid artery. Mokri, B., Sundt, T.M., Houser, O.W., Piepgras, D.G. Ann. Neurol. (1986) [Pubmed]
  4. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Kruuse, C., Thomsen, L.L., Birk, S., Olesen, J. Brain (2003) [Pubmed]
  5. Presynaptic and postsynaptic alpha 2-adrenergic receptors in human cerebral arteries and their alteration after subarachnoid hemorrhage. Tsukahara, T., Taniguchi, T., Miwa, S., Shimohama, S., Fujiwara, M., Nishikawa, M., Handa, H. Stroke (1988) [Pubmed]
  6. Central serotonergic nerves project to the pial vessels of the brain. Edvinsson, L., Degueurce, A., Duverger, D., MacKenzie, E.T., Scatton, B. Nature (1983) [Pubmed]
  7. Vasoactive intestinal polypeptide-like substance: the potential transmitter for cerebral vasodilation. Lee, T.J., Saito, A., Berezin, I. Science (1984) [Pubmed]
  8. Mutation in cystatin C gene causes hereditary brain haemorrhage. Palsdottir, A., Abrahamson, M., Thorsteinsson, L., Arnason, A., Olafsson, I., Grubb, A., Jensson, O. Lancet (1988) [Pubmed]
  9. 5-HT receptors in human and animal cerebrovasculature. Parsons, A.A. Trends Pharmacol. Sci. (1991) [Pubmed]
  10. Acetylcholine levels and choline acetyltransferase activity in rat cerebrovascular bed after uni- or bilateral sphenopalatine ganglionectomy. Dauphin, F., Richard, J.W., Seylaz, J., Quirion, R., Hamel, E. J. Cereb. Blood Flow Metab. (1991) [Pubmed]
  11. Potentiation by hypoxia of contractions caused by angiotensin II in dog and monkey cerebral arteries. Yoshida, K., Okamura, T., Toda, N. Stroke (1993) [Pubmed]
  12. Dissociation of vasoreactivity to acetazolamide and hypercapnia. Comparative study in patients with chronic occlusive major cerebral artery disease. Kazumata, K., Tanaka, N., Ishikawa, T., Kuroda, S., Houkin, K., Mitsumori, K. Stroke (1996) [Pubmed]
  13. Associations of serum total cholesterol, different types of stroke, and stenosis distribution of cerebral arteries. The Akita Pathology Study. Konishi, M., Iso, H., Komachi, Y., Iida, M., Shimamoto, T., Jacobs, D.R., Terao, A., Baba, S., Sankai, T., Ito, M. Stroke (1993) [Pubmed]
  14. Metabolic alterations in rabbit cerebral arteries caused by subarachnoid hemorrhage. Tsukahara, T., Kassell, N.F., Hongo, K., Lehman, R.M., Torner, J.C. Stroke (1988) [Pubmed]
  15. Nitric oxide mediates the neurogenic vasodilation of bovine cerebral arteries. González, C., Estrada, C. J. Cereb. Blood Flow Metab. (1991) [Pubmed]
  16. Effects of prostaglandin F2 alpha and thromboxane A2 analogue on bovine cerebral arterial tone and calcium fluxes. Wendling, W.W., Harakal, C. Stroke (1991) [Pubmed]
  17. Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorrhage. Onda, H., Kasuya, H., Takakura, K., Hori, T., Imaizumi, T., Takeuchi, T., Inoue, I., Takeda, J. J. Cereb. Blood Flow Metab. (1999) [Pubmed]
  18. 'Second generation' dihydropyridine calcium antagonists. Greater vascular selectivity and some unique applications. Freedman, D.D., Waters, D.D. Drugs (1987) [Pubmed]
  19. Extracellular signal-regulated kinases and contractile responses in ovine adult and fetal cerebral arteries. Zhao, Y., Long, W., Zhang, L., Longo, L.D. J. Physiol. (Lond.) (2003) [Pubmed]
  20. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Zaritsky, J.J., Eckman, D.M., Wellman, G.C., Nelson, M.T., Schwarz, T.L. Circ. Res. (2000) [Pubmed]
  21. Influence of endothelial nitric oxide on adrenergic contractile responses of human cerebral arteries. Aldasoro, M., Martínez, C., Vila, J.M., Medina, P., Lluch, S. J. Cereb. Blood Flow Metab. (1996) [Pubmed]
  22. Mechanisms of relaxant action of nicardipine, a new Ca++-antagonist, on isolated dog cerebral and mesenteric arteries. Yamamoto, M., Ohta, T., Toda, N. Stroke (1983) [Pubmed]
  23. Immunohistochemical demonstration of vasopressin nerve fibers in the cerebral artery. Itakura, T., Okuno, T., Ueno, M., Nakakita, K., Nakai, K., Naka, Y., Imai, H., Kamei, I., Komai, N. J. Cereb. Blood Flow Metab. (1988) [Pubmed]
  24. Alpha-adrenoceptors in human and animal cerebral arteries: alterations after sympathetic denervation and subarachnoid hemorrhage. Fujiwara, M., Tsukahara, T., Taniguchi, T. Trends Pharmacol. Sci. (1989) [Pubmed]
  25. Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Yamada, M., Lamping, K.G., Duttaroy, A., Zhang, W., Cui, Y., Bymaster, F.P., McKinzie, D.L., Felder, C.C., Deng, C.X., Faraci, F.M., Wess, J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  26. Essential role for smooth muscle BK channels in alcohol-induced cerebrovascular constriction. Liu, P., Xi, Q., Ahmed, A., Jaggar, J.H., Dopico, A.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  27. Histamine potentiation of nerve- and drug-induced responses of a rabbit cerebral artery. Bevan, J.A., Duckles, S.P., Lee, T.J. Circ. Res. (1975) [Pubmed]
  28. Effect of thromboxane A2/endoperoxide antagonist SQ29548 on the contractile response to acetylcholine in newborn piglet cerebral arteries. Wagerle, L.C., Busija, D.W. Circ. Res. (1990) [Pubmed]
  29. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. Tang, J., Liu, J., Zhou, C., Alexander, J.S., Nanda, A., Granger, D.N., Zhang, J.H. J. Cereb. Blood Flow Metab. (2004) [Pubmed]
  30. Characterization of functional receptors for vasoactive intestinal peptide in bovine cerebral arteries. Suzuki, Y., McMaster, D., Huang, M., Lederis, K., Rorstad, O.P. J. Neurochem. (1985) [Pubmed]
  31. Selective inhibitors differentially affect cyclooxygenase-dependent pial arteriolar responses in newborn pigs. Domoki, F., Nagy, K., Temesvári, P., Bari, F. Pediatr. Res. (2005) [Pubmed]
  32. Sphingolipids differentially regulate mitogen-activated protein kinases and intracellular Ca2+ in vascular smooth muscle: effects on CREB activation. Mathieson, F.A., Nixon, G.F. Br. J. Pharmacol. (2006) [Pubmed]
  33. Presence of contractile endothelin-A and dilatory endothelin-B receptors in human cerebral arteries. Nilsson, T., Cantera, L., Adner, M., Edvinsson, L. Neurosurgery (1997) [Pubmed]
  34. Localization of neuropeptide Y Y1 receptors in cerebral blood vessels. Bao, L., Kopp, J., Zhang, X., Xu, Z.Q., Zhang, L.F., Wong, H., Walsh, J., Hökfelt, T. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  35. EP1- and EP3-receptors mediate prostaglandin E2-induced constriction of porcine large cerebral arteries. Jadhav, V., Jabre, A., Lin, S.Z., Lee, T.J. J. Cereb. Blood Flow Metab. (2004) [Pubmed]
  36. Differential effects of electrical stimulation of the dorsal raphe nucleus and of cervical sympathectomy on serotonin and noradrenaline concentrations in major cerebral arteries and pial vessels in the rat. Bonvento, G., Lacombe, P., MacKenzie, E.T., Rouquier, L., Scatton, B., Seylaz, J. J. Cereb. Blood Flow Metab. (1990) [Pubmed]
  37. Neuropeptide Y and the cerebral circulation. Tuor, U.I., Kelly, P.A., Edvinsson, L., McCulloch, J. J. Cereb. Blood Flow Metab. (1990) [Pubmed]
 
WikiGenes - Universities