The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)


Chemical Compound Review

AG-H-33165     (2R)-2-amino-6-[4-[(2S)-2- amino-2-carboxy...

Synonyms: KST-1A9128, AC1L2XZK, AR-1A2689, AC1Q228O, 83462-55-9, ...
This record was replaced with 3034763.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid


Psychiatry related information on (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid

  • The most sensitive indices of the levels of physical activity proved to be the noncollagenous protein, OC, and the collagen crosslinker, DPD [6].
  • Deoxypyridinoline levels decreased significantly in the HRT alone and HRT + T groups, - 14.4 +/- 6.8% and -26.9 +/- 7.6%, respectively [7].

High impact information on (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid


Chemical compound and disease context of (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid

  • RESULTS: Pre- and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p < 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased >55% above preflight levels, p < 0.001) [13].
  • The heritabilities (95% CIs) for markers of bone formation also were assessed; bone-specific alkaline phosphatase (BSAP), 74% (67-80%), and osteocalcin, 29% (14-44%); marker of bone resorption deoxypyridinoline (DPD), 58% (52-64%); and measure of calcium homeostasis 24 h urine calcium, creatinine (Cr), 52% (41-61%) [14].
  • Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal during reambulation [15].
  • Urinary deoxypyridinoline excretion increased more in group 1 than in group 3 (P = 0.023), suggesting a significant effect of androgens on bone resorption, whereas serum N-telopeptide levels increased more in group 3 than in group 2 (P = 0.037), suggesting a significant effect of estrogen on bone resorption [16].
  • The changes after ERT were: serum ionized calcium and ultrafiltrable calcium, no change; serum intact PTH, 38.2% increase (P < 0.0001); serum 1,25-dihydroxyvitamin D, 23.8% increase (P < 0.0001); urinary calcium excretion, 33.3% decrease (P < 0.001); and deoxypyridinoline (a marker for bone resorption), 19.5% decrease (P < 0.0001) [17].

Biological context of (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid


Anatomical context of (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid


Associations of (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid with other chemical compounds

  • Unloading-induced increase in the levels of osteoclastic activities such as osteoclast number and surface as well as urinary deoxypyridinoline was all suppressed by the treatment with propranolol [26].
  • Plasma Hcy was measured with IMx, serum vitamin B12 with competitive immunoassay (IA) luminescence, serum osteocalcin (OC) with immunoradiometric assay (IRMA), and urinary excretion of deoxypyridinoline (DPD) with competitive IA and corrected for creatinine (Cr) concentration [27].
  • Prompt increases in markers of resorption--pyridinoline (PD), deoxypyridinoline (DPD), and hydroxyproline (Hyp)/g creatinine--during the first few days of inactivity were paralleled by tartrate-resistant acid phosphatase (TRAP) with significant increases in all these markers by day 4 of bed rest [6].
  • We conclude that higher levels of urine NTX, CTX, Pyr, Dpyr, and serum OC are associated with faster bone loss at the hip in this population of elderly women not receiving estrogen replacement therapy, but these biochemical markers have limited value for predicting rapid hip bone loss in individuals [28].
  • Samples were collected at 0, 3, and 6 months to measure serum calcium, 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), osteocalcin, and urinary deoxypyridinoline (DPD) [29].

Gene context of (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid

  • On this low calcium diet, both groups of mice had the same serum 1alpha,25D3, with similar increments in intestinal calcium absorption, serum AP, OC, and urinary DPD [30].
  • Analysis of a second urine specimen obtained from 19 of the subjects 1 to 7 months after the first also revealed a significant correlation between thrombin generation and IL-6, DpD, and VEGF excretion [31].
  • METHODS: Using ELISA and radioimmunoassay methods, we estimated serum concentrations of IL-6, osteocalcin, ICTP, intact PTH, and spot urine concentrations of NTx and Dpd in 25 female patients with active RA, 25 female patients with suppressed disease, and 25 age matched healthy female controls [32].
  • CRP in RA patients correlated with DPD and inversely with PTH [33].
  • The principal outcomes associated with the presence of a low BMD were high OPG and lysylpyridinoline/creatinine ratio (Dpd) values [34].

Analytical, diagnostic and therapeutic context of (2R)-2-amino-6-[4-[(2S)-2-amino-2-carboxy-ethyl]-5-[(3S)-3-amino-3-carboxy-propyl]-3-hydroxy-pyridin-1-yl]hexanoic acid


  1. Regulation of murine fetal-placental calcium metabolism by the calcium-sensing receptor. Kovacs, C.S., Ho-Pao, C.L., Hunzelman, J.L., Lanske, B., Fox, J., Seidman, J.G., Seidman, C.E., Kronenberg, H.M. J. Clin. Invest. (1998) [Pubmed]
  2. Implant design affects markers of bone resorption and formation in total hip replacement. Qureshi, A.A., Virdi, A.S., Didonna, M.L., Jacobs, J.J., Masuda, K., Paprosky, W.P., Thonar, E.J., Sumner, D.R. J. Bone Miner. Res. (2002) [Pubmed]
  3. Comparative study of alendronate versus etidronate for the treatment of Paget's disease of bone. Siris, E., Weinstein, R.S., Altman, R., Conte, J.M., Favus, M., Lombardi, A., Lyles, K., McIlwain, H., Murphy, W.A., Reda, C., Rude, R., Seton, M., Tiegs, R., Thompson, D., Tucci, J.R., Yates, A.J., Zimering, M. J. Clin. Endocrinol. Metab. (1996) [Pubmed]
  4. Reduced bone mineral density in human immunodeficiency virus-infected patients and its association with increased central adiposity and postload hyperglycemia. Brown, T.T., Ruppe, M.D., Kassner, R., Kumar, P., Kehoe, T., Dobs, A.S., Timpone, J. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  5. Comparative efficacy and side effects of the treatment of euthyroid goiter with levo-thyroxine or triiodothyroacetic acid. Brenta, G., Schnitman, M., Fretes, O., Facco, E., Gurfinkel, M., Damilano, S., Pacenza, N., Blanco, A., Gonzalez, E., Pisarev, M.A. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  6. Changes in markers of bone formation and resorption in a bed rest model of weightlessness. Lueken, S.A., Arnaud, S.B., Taylor, A.K., Baylink, D.J. J. Bone Miner. Res. (1993) [Pubmed]
  7. Sublingual administration of micronized estradiol and progesterone, with and without micronized testosterone: effect on biochemical markers of bone metabolism and bone mineral density. Miller, B.E., De Souza, M.J., Slade, K., Luciano, A.A. Menopause (New York, N.Y.) (2000) [Pubmed]
  8. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. Ishijima, M., Rittling, S.R., Yamashita, T., Tsuji, K., Kurosawa, H., Nifuji, A., Denhardt, D.T., Noda, M. J. Exp. Med. (2001) [Pubmed]
  9. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. Hoff, A.O., Catala-Lehnen, P., Thomas, P.M., Priemel, M., Rueger, J.M., Nasonkin, I., Bradley, A., Hughes, M.R., Ordonez, N., Cote, G.J., Amling, M., Gagel, R.F. J. Clin. Invest. (2002) [Pubmed]
  10. Alendronate increases lumbar spine bone mineral density in patients with Crohn's disease. Haderslev, K.V., Tjellesen, L., Sorensen, H.A., Staun, M. Gastroenterology (2000) [Pubmed]
  11. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. van der Eerden, B.C., Hoenderop, J.G., de Vries, T.J., Schoenmaker, T., Buurman, C.J., Uitterlinden, A.G., Pols, H.A., Bindels, R.J., van Leeuwen, J.P. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  12. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Takamatsu, Y., Simmons, P.J., Moore, R.J., Morris, H.A., To, L.B., Lévesque, J.P. Blood (1998) [Pubmed]
  13. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. Smith, S.M., Wastney, M.E., O'Brien, K.O., Morukov, B.V., Larina, I.M., Abrams, S.A., Davis-Street, J.E., Oganov, V., Shackelford, L.C. J. Bone Miner. Res. (2005) [Pubmed]
  14. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. Hunter, D., De Lange, M., Snieder, H., MacGregor, A.J., Swaminathan, R., Thakker, R.V., Spector, T.D. J. Bone Miner. Res. (2001) [Pubmed]
  15. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. Zerwekh, J.E., Ruml, L.A., Gottschalk, F., Pak, C.Y. J. Bone Miner. Res. (1998) [Pubmed]
  16. Differential effects of androgens and estrogens on bone turnover in normal men. Leder, B.Z., LeBlanc, K.M., Schoenfeld, D.A., Eastell, R., Finkelstein, J.S. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  17. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause--a clinical research center study. McKane, W.R., Khosla, S., Burritt, M.F., Kao, P.C., Wilson, D.M., Ory, S.J., Riggs, B.L. J. Clin. Endocrinol. Metab. (1995) [Pubmed]
  18. Bone mineral density, serum insulin-like growth factor I, and bone turnover markers in viral cirrhosis. Gallego-Rojo, F.J., Gonzalez-Calvin, J.L., Muñoz-Torres, M., Mundi, J.L., Fernandez-Perez, R., Rodrigo-Moreno, D. Hepatology (1998) [Pubmed]
  19. Effects of inflammation and treatment on bone turnover and bone mass in polymyalgia rheumatica. Dolan, A.L., Moniz, C., Dasgupta, B., Li, F., Mackintosh, C., Todd, P., Corrigall, V., Panayi, G.S. Arthritis Rheum. (1997) [Pubmed]
  20. Urinary hydroxypyridinium crosslinks of collagen as markers of bone resorption and estrogen efficacy in postmenopausal osteoporosis. Seibel, M.J., Cosman, F., Shen, V., Gordon, S., Dempster, D.W., Ratcliffe, A., Lindsay, R. J. Bone Miner. Res. (1993) [Pubmed]
  21. Changes in bone resorption during the menstrual cycle. Chiu, K.M., Ju, J., Mayes, D., Bacchetti, P., Weitz, S., Arnaud, C.D. J. Bone Miner. Res. (1999) [Pubmed]
  22. Collagen crosslinks in fibromyalgia. Sprott, H., Müller, A., Heine, H. Arthritis Rheum. (1997) [Pubmed]
  23. NFkappaB decoy oligodeoxynucleotides ameliorates osteoporosis through inhibition of activation and differentiation of osteoclasts. Shimizu, H., Nakagami, H., Tsukamoto, I., Morita, S., Kunugiza, Y., Tomita, T., Yoshikawa, H., Kaneda, Y., Ogihara, T., Morishita, R. Gene Ther. (2006) [Pubmed]
  24. Abnormal formation of collagen cross-links in skin fibroblasts cultured from patients with Ehlers-Danlos syndrome type VI. Pasquali, M., Still, M.J., Vales, T., Rosen, R.I., Evinger, J.D., Dembure, P.P., Longo, N., Elsas, L.J. Proc. Assoc. Am. Physicians (1997) [Pubmed]
  25. Impaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype. Sakuma, Y., Tanaka, K., Suda, M., Komatsu, Y., Yasoda, A., Miura, M., Ozasa, A., Narumiya, S., Sugimoto, Y., Ichikawa, A., Ushikubi, F., Nakao, K. Infect. Immun. (2000) [Pubmed]
  26. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. Kondo, H., Nifuji, A., Takeda, S., Ezura, Y., Rittling, S.R., Denhardt, D.T., Nakashima, K., Karsenty, G., Noda, M. J. Biol. Chem. (2005) [Pubmed]
  27. Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. Dhonukshe-Rutten, R.A., Pluijm, S.M., de Groot, L.C., Lips, P., Smit, J.H., van Staveren, W.A. J. Bone Miner. Res. (2005) [Pubmed]
  28. Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. Bauer, D.C., Sklarin, P.M., Stone, K.L., Black, D.M., Nevitt, M.C., Ensrud, K.E., Arnaud, C.D., Genant, H.K., Garnero, P., Delmas, P.D., Lawaetz, H., Cummings, S.R. J. Bone Miner. Res. (1999) [Pubmed]
  29. A randomized controlled trial of vitamin D supplementation on preventing postmenopausal bone loss and modifying bone metabolism using identical twin pairs. Hunter, D., Major, P., Arden, N., Swaminathan, R., Andrew, T., MacGregor, A.J., Keen, R., Snieder, H., Spector, T.D. J. Bone Miner. Res. (2000) [Pubmed]
  30. The ClC-5 knockout mouse model of Dent's disease has renal hypercalciuria and increased bone turnover. Silva, I.V., Cebotaru, V., Wang, H., Wang, X.T., Wang, S.S., Guo, G., Devuyst, O., Thakker, R.V., Guggino, W.B., Guggino, S.E. J. Bone Miner. Res. (2003) [Pubmed]
  31. Correlates of thrombin generation in patients with advanced prostate cancer. Lind, S.E., Caprini, J.A., Goldshteyn, S., Dohnal, J.C., Vesely, S.K., Shevrin, D.H. Thromb. Haemost. (2003) [Pubmed]
  32. Serum concentrations of interleukin 6, osteocalcin, intact parathyroid hormone, and markers of bone resorption in patients with rheumatoid arthritis. Al-Awadhi, A., Olusi, S., Al-Zaid, N., Prabha, K. J. Rheumatol. (1999) [Pubmed]
  33. Vitamin D receptor genotypes are not associated with rheumatoid arthritis or biochemical parameters of bone turnover in German RA patients. Goertz, B., Fassbender, W.J., Williams, J.C., Marzeion, A.M., Bretzel, R.G., Stracke, H., Berliner, M.N. Clinical and experimental rheumatology. (2003) [Pubmed]
  34. Osteoprotegerin and bone turnover markers in heavily pretreated HIV-infected patients. Seminari, E., Castagna, A., Soldarini, A., Galli, L., Fusetti, G., Dorigatti, F., Hasson, H., Danise, A., Guffanti, M., Lazzarin, A., Rubinacci, A. HIV Med. (2005) [Pubmed]
  35. The renal clearance of free and peptide-bound deoxypyridinoline: response to pamidronate treatment of Paget's disease. Naylor, K.E., Jackson, B., Eastell, R. J. Bone Miner. Res. (2003) [Pubmed]
  36. A vacuolar ATPase inhibitor, FR167356, prevents bone resorption in ovariectomized rats with high potency and specificity: potential for clinical application. Niikura, K., Takeshita, N., Takano, M. J. Bone Miner. Res. (2005) [Pubmed]
  37. Direct, enzyme-linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. Robins, S.P., Woitge, H., Hesley, R., Ju, J., Seyedin, S., Seibel, M.J. J. Bone Miner. Res. (1994) [Pubmed]
  38. The preventive and interventional effects of raloxifene analog (LY117018 HCL) on osteopenia in ovariectomized rats. Li, X., Takahashi, M., Kushida, K., Inoue, T. J. Bone Miner. Res. (1998) [Pubmed]
WikiGenes - Universities