The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Neonatal Screening

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Neonatal Screening

  • METHODS: We reviewed the results of neonatal screening for homocystinuria over a period of 32 years in New England. Additional specimens were requested for repeated analysis when blood methionine measurements were at or above the established cutoff level [1].
  • The effects of neonatal diagnostic screening on cystic-fibrosis (CF) -related morbidity were evaluated by comparing hospital admissions for CF-related illness in the first 2 years of life in 40 patients detected by means of neonatal screening and 56 patients born in the 3 years before screening began [2].
  • Thus, autosomal recessive SR deficiency leads to BH(4) and to neurotransmitter deficiencies without hyperphenylalaninemia and may not be detected by neonatal screening for phenylketonuria [3].
  • Fluorometric quantitative tyrosine determination on dried-blood spots is the primary neonatal screening test used for tyrosinemia type I (HT) in the province of Quebec [4].
  • We have previously reported that despite neonatal screening, children with severe congenital hypothyroidism treated at 5 weeks of age with 6 micrograms/kg.day levothyroxine have clinically significant intellectual impairment, whereas those with the moderate form of the disease are indistinguishable from controls [5].
 

Psychiatry related information on Neonatal Screening

 

High impact information on Neonatal Screening

  • CONCLUSIONS: A cutoff level for blood methionine of 1 mg per deciliter in neonatal screening tests for homocystinuria should identify affected infants who have only slightly elevated concentrations of methionine and reduce the frequency of false negative results [1].
  • Clinical findings in four children with biotinidase deficiency detected through a statewide neonatal screening program [9].
  • CONCLUSIONS: In CF patients diagnosed through neonatal screening, P aeruginosa pulmonary infections occurred 6 to 12 months before the organism was isolated from respiratory secretions [10].
  • We detected GRTH at birth by analysis of blood obtained during routine neonatal screening [11].
  • Isolated biotin-resistant 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive disorder of leucine catabolism that appears to be the most frequent organic aciduria detected in tandem mass spectrometry-based neonatal screening programs [12].
 

Chemical compound and disease context of Neonatal Screening

 

Biological context of Neonatal Screening

 

Anatomical context of Neonatal Screening

 

Associations of Neonatal Screening with chemical compounds

 

Gene context of Neonatal Screening

  • Applications of dystrophin testing include improved diagnostic accuracy, carrier detection, fetal diagnosis, and evaluation of asymptomatic male infants identified as a result of neonatal screening for increased serum creatine kinase levels [30].
  • This disease warrants early detection through neonatal screening program, since the beneficial effect of early administration of adequate therapy with combined use of betaine and a high dose of methionine is rewarding and may be the treatment of choice for MTHFR deficiency [31].
  • Fumarylacetoacetase (FAH) (E.C.3.7.1.2) was measured retrospectively by an ELISA on 25 dried-blood samples from proven patients with HT and prospectively in 72,000 specimens received in the neonatal screening program [4].
  • We report here two new mutations in exon 11 of the PAH gene (GenBank U49897), V1163delTG and P362T (using cDNA sequence), detected during the analysis of 57 PKU and 36 HPA patients belonging to 84 unrelated families detected under a neonatal screening program performed in Catalonia [32].
  • We have retrospectively analyzed 837 random anonymized dried blood spot (DBS) samples from neonatal screening programs in Scandinavia for mutations in HFE, the candidate gene for hemochromatosis [33].
 

Analytical, diagnostic and therapeutic context of Neonatal Screening

References

  1. Reduction of false negative results in screening of newborns for homocystinuria. Peterschmitt, M.J., Simmons, J.R., Levy, H.L. N. Engl. J. Med. (1999) [Pubmed]
  2. Reduced morbidity in patients with cystic fibrosis detected by neonatal screening. Wilcken, B., Chalmers, G. Lancet (1985) [Pubmed]
  3. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Bonafé, L., Thöny, B., Penzien, J.M., Czarnecki, B., Blau, N. Am. J. Hum. Genet. (2001) [Pubmed]
  4. Fumarylacetoacetase measurement as a mass-screening procedure for hereditary tyrosinemia type I. Laberge, C., Grenier, A., Valet, J.P., Morissette, J. Am. J. Hum. Genet. (1990) [Pubmed]
  5. Outcome of severe congenital hypothyroidism: closing the developmental gap with early high dose levothyroxine treatment. Dubuis, J.M., Glorieux, J., Richer, F., Deal, C.L., Dussault, J.H., Van Vliet, G. J. Clin. Endocrinol. Metab. (1996) [Pubmed]
  6. Identifying children at high somatic risk: long-term effects on mother-child interaction. McNeil, T.F., Harty, B., Thelin, T., Aspegren-Jansson, E., Sveger, T. Acta psychiatrica Scandinavica. (1986) [Pubmed]
  7. Cystic fibrosis newborn screening: impact of early screening results on parenting stress. Baroni, M.A., Anderson, Y.E., Mischler, E. Pediatric nursing. (1997) [Pubmed]
  8. Psychological factors in cost-benefit analysis of somatic prevention. A study of the psychological effects of neonatal screening for alpha 1-antitrypsin deficiency. McNeil, T.F., Thelin, T., Aspegren-Jansson, E., Sveger, T., Harty, B. Acta paediatrica Scandinavica. (1985) [Pubmed]
  9. Clinical findings in four children with biotinidase deficiency detected through a statewide neonatal screening program. Wolf, B., Heard, G.S., Jefferson, L.G., Proud, V.K., Nance, W.E., Weissbecker, K.A. N. Engl. J. Med. (1985) [Pubmed]
  10. Respiratory infections with Pseudomonas aeruginosa in children with cystic fibrosis: early detection by serology and assessment of risk factors. West, S.E., Zeng, L., Lee, B.L., Kosorok, M.R., Laxova, A., Rock, M.J., Splaingard, M.J., Farrell, P.M. JAMA (2002) [Pubmed]
  11. Neonatal detection of generalized resistance to thyroid hormone. Weiss, R.E., Balzano, S., Scherberg, N.H., Refetoff, S. JAMA (1990) [Pubmed]
  12. The molecular basis of human 3-methylcrotonyl-CoA carboxylase deficiency. Baumgartner, M.R., Almashanu, S., Suormala, T., Obie, C., Cole, R.N., Packman, S., Baumgartner, E.R., Valle, D. J. Clin. Invest. (2001) [Pubmed]
  13. Diagnosis of peroxisomal disorders by analysis of phytanic and pristanic acids in stored blood spots collected at neonatal screening. ten Brink, H.J., van den Heuvel, C.M., Christensen, E., Largillière, C., Jakobs, C. Clin. Chem. (1993) [Pubmed]
  14. Spectrophotometric microassay for delta-aminolevulinate dehydratase in dried-blood spots as confirmation for hereditary tyrosinemia type I. Schulze, A., Frommhold, D., Hoffmann, G.F., Mayatepek, E. Clin. Chem. (2001) [Pubmed]
  15. Effect of single and multiple courses of prenatal corticosteroids on 17-hydroxyprogesterone levels: implication for neonatal screening of congenital adrenal hyperplasia. Gatelais, F., Berthelot, J., Beringue, F., Descamps, P., Bonneau, D., Limal, J.M., Coutant, R. Pediatr. Res. (2004) [Pubmed]
  16. Acylcarnitine profiles of preterm infants over the first four weeks of life. Meyburg, J., Schulze, A., Kohlmueller, D., Pöschl, J., Linderkamp, O., Hoffmann, G.F., Mayatepek, E. Pediatr. Res. (2002) [Pubmed]
  17. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. Fitness, J., Dixit, N., Webster, D., Torresani, T., Pergolizzi, R., Speiser, P.W., Day, D.J. J. Clin. Endocrinol. Metab. (1999) [Pubmed]
  18. Molecular characterization of histidinemia: identification of four missense mutations in the histidase gene. Kawai, Y., Moriyama, A., Asai, K., Coleman-Campbell, C.M., Sumi, S., Morishita, H., Suchi, M. Hum. Genet. (2005) [Pubmed]
  19. Statistical approaches for the detection of heterozygotes for biotinidase deficiency. Weissbecker, K.A., Nance, W.E., Eaves, L.J., Piussan, C., Wolf, B. Am. J. Med. Genet. (1991) [Pubmed]
  20. Evaluation of growth and changes in body composition following neonatal diagnosis of cystic fibrosis. Greer, R., Shepherd, R., Cleghorn, G., Bowling, F.G., Holt, T. J. Pediatr. Gastroenterol. Nutr. (1991) [Pubmed]
  21. Genetic analysis carried out on blood-spots of phenylalanine hydroxylase-deficient newborns detected by Northeastern Italian neonatal screening. Zaffanello, M., Zamboni, G., Maselli, M., Gandini, A., Camilot, M., Maffeis, C., Burlina, A.B., Tatò, L. Genetic testing. (2005) [Pubmed]
  22. Familial PAX8 small deletion (c.989_992delACCC) associated with extreme phenotype variability. de Sanctis, L., Corrias, A., Romagnolo, D., Di Palma, T., Biava, A., Borgarello, G., Gianino, P., Silvestro, L., Zannini, M., Dianzani, I. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  23. Modification of neonatal screening test for erythrocyte glucose-6-phosphate dehydrogenase deficiency. Schoos-Barbette, S., Dodinval-Versie, J., Lambotte, C. Clin. Chim. Acta (1976) [Pubmed]
  24. Screening for cystic fibrosis. A comparative study. Dankert-Roelse, J.E., te Meerman, G.J., Martijn, A., ten Kate, L.P., Knol, K. Acta paediatrica Scandinavica. (1987) [Pubmed]
  25. Neurological deterioration in young adults with phenylketonuria. Thompson, A.J., Smith, I., Brenton, D., Youl, B.D., Rylance, G., Davidson, D.C., Kendall, B., Lees, A.J. Lancet (1990) [Pubmed]
  26. Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. Nordenström, A., Thilén, A., Hagenfeldt, L., Larsson, A., Wedell, A. J. Clin. Endocrinol. Metab. (1999) [Pubmed]
  27. Neonatal screening for hereditary fructose intolerance: frequency of the most common mutant aldolase B allele (A149P) in the British population. James, C.L., Rellos, P., Ali, M., Heeley, A.F., Cox, T.M. J. Med. Genet. (1996) [Pubmed]
  28. Newborn screening for hepatorenal tyrosinemia: Tandem mass spectrometric quantification of succinylacetone. Sander, J., Janzen, N., Peter, M., Sander, S., Steuerwald, U., Holtkamp, U., Schwahn, B., Mayatepek, E., Trefz, F.K., Das, A.M. Clin. Chem. (2006) [Pubmed]
  29. Outcome in three siblings with antibody-mediated transient congenital hypothyroidism. Pacaud, D., Huot, C., Gattereau, A., Brown, R.S., Glorieux, J., Dussault, J.H., Van Vliet, G. J. Pediatr. (1995) [Pubmed]
  30. Dystrophin: a clinical perspective. Wessel, H.B. Pediatric neurology. (1990) [Pubmed]
  31. Clinical, fluorine-18 labeled 2-fluoro-2-deoxyglucose positron emission tomography of the brain, MR spectroscopy, and therapeutic attempts in methylenetetrahydrofolate reductase deficiency. Al-Essa, M.A., Al Amir, A., Rashed, M., Al Jishi, E., Abutaleb, A., Mobaireek, K., Shin, Y.S., Ozand, P.T. Brain Dev. (1999) [Pubmed]
  32. Two novel mutations in exon 11 of the PAH gene (V1163del TG and P362T) associated with classic phenylketonuira and mild phenylketonuria. Mutations in brief no. 143. Online. Mallolas, J., Campistol, J., Lambruschini, N., Vilaseca, M.A., Cambra, F.J., Estivill, X., Milà, M. Hum. Mutat. (1998) [Pubmed]
  33. A retrospective anonymous pilot study in screening newborns for HFE mutations in Scandinavian populations. Merryweather-Clarke, A.T., Simonsen, H., Shearman, J.D., Pointon, J.J., Nørgaard-Pedersen, B., Robson, K.J. Hum. Mutat. (1999) [Pubmed]
  34. Lower airway inflammation in infants and young children with cystic fibrosis. Armstrong, D.S., Grimwood, K., Carlin, J.B., Carzino, R., Gutièrrez, J.P., Hull, J., Olinsky, A., Phelan, E.M., Robertson, C.F., Phelan, P.D. Am. J. Respir. Crit. Care Med. (1997) [Pubmed]
  35. Quality of life of children with cystic fibrosis. Koscik, R.L., Douglas, J.A., Zaremba, K., Rock, M.J., Splaingard, M.L., Laxova, A., Farrell, P.M. J. Pediatr. (2005) [Pubmed]
  36. Retrospective study of the cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Guthrie cards from a large cohort of neonatal screening for cystic fibrosis. Verlingue, C., Mercier, B., Lecoq, I., Audrézet, M.P., Laroche, D., Travert, G., Férec, C. Hum. Genet. (1994) [Pubmed]
  37. Impact of public health strategies on the birth prevalence of cystic fibrosis in Brittany, France. Scotet, V., Audrézet, M.P., Roussey, M., Rault, G., Blayau, M., De Braekeleer, M., Férec, C. Hum. Genet. (2003) [Pubmed]
  38. Early bacteriologic, immunologic, and clinical courses of young infants with cystic fibrosis identified by neonatal screening. Abman, S.H., Ogle, J.W., Harbeck, R.J., Butler-Simon, N., Hammond, K.B., Accurso, F.J. J. Pediatr. (1991) [Pubmed]
 
WikiGenes - Universities