The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

TEGP     2-[(2-ethoxy-3- hexadecylsulfanyl-propoxy)...

Synonyms: CHEMBL286705, AG-K-42534, ACMC-20asym, AC1L2JPP, CTK4A1940, ...
This record was replaced with 73355.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 2-[(2-ethoxy-3-hexadecylthio-propoxy)-hydroxy-phosphoryl]oxyethyl-trimethyl-ammonium

 

High impact information on 2-[(2-ethoxy-3-hexadecylthio-propoxy)-hydroxy-phosphoryl]oxyethyl-trimethyl-ammonium

  • These results support prior studies emphasizing the role of peroxisomes and the acyl DHAP pathway in cellular ether lipid synthesis, establish Zellweger syndrome cells as valuable for elucidating peroxisomal functions, and provide prenatal and postnatal diagnostic assays as well as potential therapeutic strategies for Zellweger syndrome [6].
  • We also observed that mouse cells lacking PEX11beta display reduced peroxisome abundance, even in the absence of peroxisomal metabolic substrates, and that PEX11beta(-/-) mice are partially deficient in two distinct peroxisomal metabolic pathways, ether lipid synthesis and very long chain fatty acid oxidation [7].
  • This ether lipid is increased approximately 35-fold over parental cells in the most highly PEG-resistant cell line [8].
  • The synthesis and assembly of thylakoid membrane polar glycerolipid (glycolipid, phospholipid, and ether lipid) have been monitored in synchronous cultures of the green alga Chlamydomonas reinhardtii 137+ [9].
  • Here, a point charge probe method was used to investigate the dipole potentials of both ester and ether lipid membranes [10].
 

Chemical compound and disease context of 2-[(2-ethoxy-3-hexadecylthio-propoxy)-hydroxy-phosphoryl]oxyethyl-trimethyl-ammonium

 

Biological context of 2-[(2-ethoxy-3-hexadecylthio-propoxy)-hydroxy-phosphoryl]oxyethyl-trimethyl-ammonium

  • The block by ether lipid analogues of inositol phosphate-mediated [Ca2+]i signaling suggests a mechanism for preventing the action of growth factors that could contribute to the inhibition of cell proliferation by the agents [16].
  • Another ether lipid, the thio compound 1-O-hexadecylmercapto-2-methoxymethyl-rac-glycero-3-phosphocholine , enhanced peroxidation in the presence of cofactors with kinetics corresponding to those of cytotoxicity [17].
  • The cyclic ether lipid analogue (+/-)-2-(hydroxy[tetrahydro-2-(octadecyloxy)methylfuran-2- yl]methoxyl)phosphinyloxy,N,N,N-trimethyethaniminium hydroxide inhibited with an IC50 of 42 microM and hexadexylphosphocholine with an IC50 of 48 microM [18].
  • Pharmacologic inhibition of Akt, with PIA6, a phosphatidylinositol ether lipid analogue (PIA), blocks BDNF-induced phosphorylation of Akt and the downstream target of Akt [19].
  • To assess the role of protein kinase C (Ca2+/phospholipid-dependent enzyme) in the activation of the human neutrophil respiratory burst, we have utilized an ether lipid of the type 1-O-alkyl-2-O-methylglycerol (AMG), recently shown to be an inhibitor of this kinase [20].
 

Anatomical context of 2-[(2-ethoxy-3-hexadecylthio-propoxy)-hydroxy-phosphoryl]oxyethyl-trimethyl-ammonium

 

Associations of 2-[(2-ethoxy-3-hexadecylthio-propoxy)-hydroxy-phosphoryl]oxyethyl-trimethyl-ammonium with other chemical compounds

 

Gene context of 2-[(2-ethoxy-3-hexadecylthio-propoxy)-hydroxy-phosphoryl]oxyethyl-trimethyl-ammonium

  • These results establish that modulation of the ether lipid composition of membranes can alter PKC isozyme translocation and indicate that a PKC isozyme other than PKC alpha, most likely PKC epsilon, is involved in MAPK activation [28].
  • In contrast, the insulin-dependent induction of these two genes, as well as the activation of PKB, were shown to be suppressed in hepatocytes treated with the lipid ether compound PIA6 (phosphatidylinositol ether lipid analogue 6), a recently discovered specific inhibitor of PKB [29].
  • Also like the ether lipid, auranofin only partially blocked the synergy exhibited by TPA and TNF-alpha [30].
  • Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis [31].
  • Alkylphospholipids, such as the antitumor ether lipid 1-O-octadecyl-2-O-methylglycero-3-phosphocholine, modulate cancer cell invasion through changes in the adherens junction E-cadherin complex, a major organizer of epithelia [32].
 

Analytical, diagnostic and therapeutic context of 2-[(2-ethoxy-3-hexadecylthio-propoxy)-hydroxy-phosphoryl]oxyethyl-trimethyl-ammonium

References

  1. Impaired membrane traffic in defective ether lipid biosynthesis. Thai, T.P., Rodemer, C., Jauch, A., Hunziker, A., Moser, A., Gorgas, K., Just, W.W. Hum. Mol. Genet. (2001) [Pubmed]
  2. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., Just, W.W. Hum. Mol. Genet. (2003) [Pubmed]
  3. Membrane lipid modification and sensitivity of leukemic cells to the thioether lipid analogue BM 41.440. Petersen, E.S., Kelley, E.E., Modest, E.J., Burns, C.P. Cancer Res. (1992) [Pubmed]
  4. Cytotoxic interactions of heat and an ether lipid analogue in human ovarian carcinoma cells. Fujiwara, K., Modest, E.J., Welander, C.E., Wallen, C.A. Cancer Res. (1989) [Pubmed]
  5. Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Powis, G., Seewald, M.J., Gratas, C., Melder, D., Riebow, J., Modest, E.J. Cancer Res. (1992) [Pubmed]
  6. Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. Datta, N.S., Wilson, G.N., Hajra, A.K. N. Engl. J. Med. (1984) [Pubmed]
  7. PEX11 promotes peroxisome division independently of peroxisome metabolism. Li, X., Gould, S.J. J. Cell Biol. (2002) [Pubmed]
  8. Biochemical studies on cell fusion. I. Lipid composition of fusion-resistant cells. Roos, D.S., Choppin, P.W. J. Cell Biol. (1985) [Pubmed]
  9. Thylakoid membrane biogenesis in Chlamydomonas reinhardtii 137+: cell cycle variations in the synthesis and assembly of polar glycerolipid. Janero, D.R., Barrnett, R. J. Cell Biol. (1981) [Pubmed]
  10. Using cryo-EM to measure the dipole potential of a lipid membrane. Wang, L., Bose, P.S., Sigworth, F.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  11. Enhanced therapeutic effects of liposome-associated 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine. Ahmad, I., Filep, J.J., Franklin, J.C., Janoff, A.S., Masters, G.R., Pattassery, J., Peters, A., Schupsky, J.J., Zha, Y., Mayhew, E. Cancer Res. (1997) [Pubmed]
  12. Oral activity of ether lipid ester prodrugs of cidofovir against experimental human cytomegalovirus infection. Bidanset, D.J., Beadle, J.R., Wan, W.B., Hostetler, K.Y., Kern, E.R. J. Infect. Dis. (2004) [Pubmed]
  13. Phase II study of daily oral miltefosine (hexadecylphosphocholine) in advanced colorectal cancer. Planting, A.S., Stoter, G., Verweij, J. Eur. J. Cancer (1993) [Pubmed]
  14. Glyceryl ethers in peroxisomal disease. Poulos, A., Bankier, A., Beckman, K., Johnson, D., Robertson, E.F., Sharp, P., Sheffield, L., Singh, H., Usher, S., Wise, G. Clin. Genet. (1991) [Pubmed]
  15. Erucylphosphocholine, a novel antineoplastic ether lipid, blocks growth and induces apoptosis in brain tumor cell lines in vitro. Jendrossek, V., Erdlenbruch, B., Hunold, A., Kugler, W., Eibl, H., Lakomek, M. Int. J. Oncol. (1999) [Pubmed]
  16. Inhibition of growth factor-dependent inositol phosphate Ca2+ signaling by antitumor ether lipid analogues. Seewald, M.J., Olsen, R.A., Sehgal, I., Melder, D.C., Modest, E.J., Powis, G. Cancer Res. (1990) [Pubmed]
  17. Membrane peroxidative damage enhancement by the ether lipid class of antineoplastic agents. Wagner, B.A., Buettner, G.R., Burns, C.P. Cancer Res. (1992) [Pubmed]
  18. Inhibition of the signalling enzyme phosphatidylinositol-3-kinase by antitumor ether lipid analogues. Berggren, M.I., Gallegos, A., Dressler, L.A., Modest, E.J., Powis, G. Cancer Res. (1993) [Pubmed]
  19. Genetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death. Li, Z., Jaboin, J., Dennis, P.A., Thiele, C.J. Cancer Res. (2005) [Pubmed]
  20. 1-O-hexadecyl-2-Q-methylglycerol, a novel inhibitor of protein kinase C, inhibits the respiratory burst in human neutrophils. Kramer, I.M., van der Bend, R.L., Tool, A.T., van Blitterswijk, W.J., Roos, D., Verhoeven, A.J. J. Biol. Chem. (1989) [Pubmed]
  21. Correlation of ether lipid content of human leukemia cell lines and their susceptibility to 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Chabot, M.C., Wykle, R.L., Modest, E.J., Daniel, L.W. Cancer Res. (1989) [Pubmed]
  22. Ether-linked phosphoglyceride content of human leukemia cells. Chabot, M.C., Greene, D.G., Brockschmidt, J.K., Capizzi, R.L., Wykle, R.L. Cancer Res. (1990) [Pubmed]
  23. Polymerase chain reaction-based cloning of alkyl-dihydroxyacetonephosphate synthase complementary DNA from guinea pig liver. de Vet, E.C., Zomer, A.W., Lahaut, G.J., van den Bosch, H. J. Biol. Chem. (1997) [Pubmed]
  24. Elevation of leukemic cell intracellular calcium by the ether lipid SRI 62-834. Lazenby, C.M., Thompson, M.G., Hickman, J.A. Cancer Res. (1990) [Pubmed]
  25. Glyceryl-ether monooxygenase [EC 1.14.16.5]. A microsomal enzyme of ether lipid metabolism. Taguchi, H., Armarego, W.L. Medicinal research reviews. (1998) [Pubmed]
  26. Interaction of platelet-activating factor with endothelial and vascular smooth muscle cells in coculture. Stoll, L.L., Spector, A.A. J. Cell. Physiol. (1989) [Pubmed]
  27. Plasmalogen status influences docosahexaenoic acid levels in a macrophage cell line. Insights using ether lipid-deficient variants. Gaposchkin, D.P., Zoeller, R.A. J. Lipid Res. (1999) [Pubmed]
  28. Evidence that the bradykinin-induced activation of phospholipase D and of the mitogen-activated protein kinase cascade involve different protein kinase C isoforms. Clark, K.J., Murray, A.W. J. Biol. Chem. (1995) [Pubmed]
  29. Lack of evidence for a role of TRB3/NIPK as an inhibitor of PKB-mediated insulin signalling in primary hepatocytes. Iynedjian, P.B. Biochem. J. (2005) [Pubmed]
  30. ET-18-OCH3 inhibits nuclear factor-kappa B activation by 12-O-tetradecanoylphorbol-13-acetate but not by tumor necrosis factor-alpha or interleukin 1 alpha. Daniel, L.W., Civoli, F., Rogers, M.A., Smitherman, P.K., Raju, P.A., Roederer, M. Cancer Res. (1995) [Pubmed]
  31. Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Gajate, C., Fonteriz, R.I., Cabaner, C., Alvarez-Noves, G., Alvarez-Rodriguez, Y., Modolell, M., Mollinedo, F. Int. J. Cancer (2000) [Pubmed]
  32. Alkylphospholipids reversibly open epithelial tight junctions. Leroy, A., de Bruyne, G.K., Oomen, L.C., Mareel, M.M. Anticancer Res. (2003) [Pubmed]
  33. Glomerular platelet-activating factor levels and origin in experimental glomerulonephritis. Lianos, E.A., Zanglis, A. Kidney Int. (1990) [Pubmed]
  34. Archaebacterial ether lipid diversity analyzed by supercritical fluid chromatography: integration with a bacterial lipid protocol. Hedrick, D.B., Guckert, J.B., White, D.C. J. Lipid Res. (1991) [Pubmed]
  35. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Patel, G.B., Sprott, G.D. Crit. Rev. Biotechnol. (1999) [Pubmed]
  36. Chemopurging of peripheral blood-derived progenitor cells by alkyl-lysophospholipid and its effect on haematopoietic rescue after high-dose therapy. Koenigsmann, M.P., Notter, M., Knauf, W.U., Papadimitriou, C.A., Oberberg, D., Reufi, B., Mücke, C., Thiel, E., Berdel, W.E. Bone Marrow Transplant. (1996) [Pubmed]
  37. Liver and plasma concentrations in paf-acether and its precursors after partial hepatectomy. Lombard, M.N., Izzo, A.A., Benhaddi, M., Natour, J., Benveniste, J. Cell Prolif. (1996) [Pubmed]
 
WikiGenes - Universities