The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Diaminopurine     7H-purine-2,6-diamine

Synonyms: PubChem9203, NSC-743, CCRIS 923, SureCN24052, SureCN24053, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Diaminopurine


High impact information on Diaminopurine

  • Somatic cell variants that arose in vivo as a consequence of genetic or epigenetic alterations abolishing Aprt function were selected and expanded in vitro by virtue of their resistance to 2,6-diaminopurine (DAP) [6].
  • We observed that p53 null mice produced about three times as many DAP-resistant fibroblast colonies than wild-type mice, but the frequency of DAP-resistant T lymphocyte colonies was not significantly changed [6].
  • Mitotic recombination, but not point mutation, partly accounted for the increase in the frequency of DAP-resistant fibroblasts [6].
  • Somatic cell variants that exhibited functional loss of the wild-type Aprt in vivo were recovered as APRT-deficient cell colonies after culturing in selection medium containing 2, 6-diaminopurine (DAP), an adenine analog that is toxic only to cells with APRT enzyme activity [7].
  • DAP-resistant (DAP(r)) fibroblast variants were recovered at a median frequency of 12 x 10(-5) from individual ears from progeny of crosses between mouse strains 129/Sv and C3H/HeJ [7].

Chemical compound and disease context of Diaminopurine


Biological context of Diaminopurine


Anatomical context of Diaminopurine

  • From five genetically heterozygous cell lines with two different genotypes (APRT*1/APRTQ0 and APRT*1/APRT*J), we have selected 48 clones resistant to 2,6-diaminopurine [18].
  • The (S)- and (R)-enantiomers of 9-(2-phosphonylmethoxypropyl) derivatives of adenine (PMPA) and 2,6-diaminopurine (PMPDAP) were evaluated for their inhibitory effect on HIV replication in several human cell systems, including natural peripheral blood lymphocytes (PBL) and freshly isolated monocyte/macrophages (M/M) [19].
  • Newly developed acyclic nucleoside phosphonates, derivatives of adenine and 2,6-diaminopurine bearing the 2-hydroxy-3-(phosphonomethoxy)propyl (HPMP) moiety at the N9-side chain (i.e., HPMPA and HPMPDAP, respectively) were screened for in vitro immunobiological activity, using mouse resident peritoneal macrophages and splenocytes [20].
  • T- and B-cells deficient in APRT enzyme activity were cloned from peripheral blood mononuclear cells using a selecting agent, 2,6-diaminopurine [21].
  • Thermal denaturation study showed that GPNA oligomers containing alternate D-backbone configuration bind sequence-specifically to DNA and, when incubated with mammalian cells, localized specifically to the endoplasmic reticulum (ER) [22].

Associations of Diaminopurine with other chemical compounds


Gene context of Diaminopurine


Analytical, diagnostic and therapeutic context of Diaminopurine


  1. Amdoxovir versus placebo with enfuvirtide plus optimized background therapy for HIV-1-infected subjects failing current therapy (AACTG A5118). Gripshover, B.M., Ribaudo, H., Santana, J., Gerber, J.G., Campbell, T.B., Hogg, E., Jarocki, B., Hammer, S.M., Kuritzkes, D.R. Antivir. Ther. (Lond.) (2006) [Pubmed]
  2. DNA containing the base analogue 2-aminoadenine: preparation, use as hybridization probes and cleavage by restriction endonucleases. Chollet, A., Kawashima, E. Nucleic Acids Res. (1988) [Pubmed]
  3. Mechanism of action and in vitro activity of 1',3'-dioxolanylpurine nucleoside analogues against sensitive and drug-resistant human immunodeficiency virus type 1 variants. Gu, Z., Wainberg, M.A., Nguyen-Ba, N., L'Heureux, L., de Muys, J.M., Bowlin, T.L., Rando, R.F. Antimicrob. Agents Chemother. (1999) [Pubmed]
  4. Synthesis and antiviral evaluation of carbocyclic analogues of ribofuranosides of 2-amino-6-substituted-purines and of 2-amino-6-substituted-8-azapurines. Shealy, Y.F., Clayton, J.D., Arnett, G., Shannon, W.M. J. Med. Chem. (1984) [Pubmed]
  5. A facile, alternative synthesis of 4'-thioarabinonucleosides and their biological activities. Yoshimura, Y., Watanabe, M., Satoh, H., Ashida, N., Ijichi, K., Sakata, S., Machida, H., Matsuda, A. J. Med. Chem. (1997) [Pubmed]
  6. Chromosome instability contributes to loss of heterozygosity in mice lacking p53. Shao, C., Deng, L., Henegariu, O., Liang, L., Stambrook, P.J., Tischfield, J.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  7. Mitotic recombination produces the majority of recessive fibroblast variants in heterozygous mice. Shao, C., Deng, L., Henegariu, O., Liang, L., Raikwar, N., Sahota, A., Stambrook, P.J., Tischfield, J.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  8. In vitro anti-human immunodeficiency virus activities of Z- and E-methylenecyclopropane nucleoside analogues and their phosphoro-L-alaninate diesters. Uchida, H., Kodama, E.N., Yoshimura, K., Maeda, Y., Kosalaraksa, P., Maroun, V., Qiu, Y.L., Zemlicka, J., Mitsuya, H. Antimicrob. Agents Chemother. (1999) [Pubmed]
  9. Intracellular metabolism of 2',3'-dideoxynucleosides in duck hepatocyte primary cultures. Kitos, T.E., Tyrrell, D.L. Biochem. Pharmacol. (1995) [Pubmed]
  10. Investigations on the anti-HIV activity of 2',3'-dideoxyadenosine analogues with modifications in either the pentose or purine moiety. Potent and selective anti-HIV activity of 2,6-diaminopurine 2',3'-dideoxyriboside. Pauwels, R., Baba, M., Balzarini, J., Herdewijn, P., Desmyter, J., Robins, M.J., Zou, R.M., Madej, D., De Clercq, E. Biochem. Pharmacol. (1988) [Pubmed]
  11. Anti-herpesvirus activity profile of 4'-thioarabinofuranosyl purine and uracil nucleosides and activity of 1-beta-D-2'-fluoro-4'-thioarabinofuranosyl guanine and 2,6-diaminopurine against clinical isolates of human cytomegalovirus. Machida, H., Ashida, N., Miura, S., Endo, M., Yamada, K., Kitano, K., Yoshimura, Y., Sakata, S., Ijichi, O., Eizuru, Y. Antiviral Res. (1998) [Pubmed]
  12. Ribavirin and mycophenolic acid potentiate the activity of guanine- and diaminopurine-based nucleoside analogues against hepatitis B virus. Ying, C., De Clercq, E., Neyts, J. Antiviral Res. (2000) [Pubmed]
  13. High frequency in vivo loss of heterozygosity is primarily a consequence of mitotic recombination. Gupta, P.K., Sahota, A., Boyadjiev, S.A., Bye, S., Shao, C., O'Neill, J.P., Hunter, T.C., Albertini, R.J., Stambrook, P.J., Tischfield, J.A. Cancer Res. (1997) [Pubmed]
  14. 2,6-Diaminopurinedeoxyriboside as a prodrug of deoxyguanosine in L1210 cells. Weckbecker, G., Cory, J.G. Cancer Res. (1987) [Pubmed]
  15. Thermodynamic studies of base pairing involving 2,6-diaminopurine. Cheong, C., Tinoco, I., Chollet, A. Nucleic Acids Res. (1988) [Pubmed]
  16. Effects of base substitutions on the binding of a DNA-bending protein. Bailly, C., Waring, M.J., Travers, A.A. J. Mol. Biol. (1995) [Pubmed]
  17. Acyclic analogues of 2'-deoxynucleosides related to 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine as potential antiviral agents. Martin, J.C., Jeffrey, G.A., McGee, D.P., Tippie, M.A., Smee, D.F., Matthews, T.R., Verheyden, J.P. J. Med. Chem. (1985) [Pubmed]
  18. Selection of human cells having two different types of mutations in individual cells (genetic/artificial mutants). Application to the diagnosis of the heterozygous state for a type of adenine phosphoribosyltransferase deficiency. Kamatani, N., Kuroshima, S., Terai, C., Kawai, K., Mikanagi, K., Nishioka, K. Hum. Genet. (1987) [Pubmed]
  19. Activity of the (R)-enantiomers of 9-(2-phosphonylmethoxypropyl)-adenine and 9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine against human immunodeficiency virus in different human cell systems. Balzarini, J., Aquaro, S., Perno, C.F., Witvrouw, M., Holý, A., De Clercq, E. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  20. Nucleotide analogues with immunobiological properties: 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]-adenine (HPMPA), -2,6-diaminopurine (HPMPDAP), and their N6-substituted derivatives. Potmesil, P., Krecmerová, M., Kmonícková, E., Holý, A., Zídek, Z. Eur. J. Pharmacol. (2006) [Pubmed]
  21. Similarity of in vivo somatic mutations at an autosomal adenine phosphoribosyltransferase locus between T- and B-cells in human peripheral blood. Hakoda, M., Kamatani, N., Terai, C., Yamanaka, H., Taniguchi, A., Ueda, H., Kashiwazaki, S. Mutat. Res. (1996) [Pubmed]
  22. Synthesis of cell-permeable peptide nucleic acids and characterization of their hybridization and uptake properties. Zhou, P., Dragulescu-Andrasi, A., Bhattacharya, B., O'Keefe, H., Vatta, P., Hyldig-Nielsen, J.J., Ly, D.H. Bioorg. Med. Chem. Lett. (2006) [Pubmed]
  23. 5-Phosphoribosyl 1-pyrophosphate synthetase converts the acyclic nucleoside phosphonates 9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 9-(2-phosphonylmethoxyethyl)adenine directly to their antivirally active diphosphate derivatives. Balzarini, J., De Clercq, E. J. Biol. Chem. (1991) [Pubmed]
  24. Transcription of T7 DNA containing modified nucleotides by bacteriophage T7 specific RNA polymerase. Stahl, S.J., Chamberlin, M.J. J. Biol. Chem. (1978) [Pubmed]
  25. Guanine modification during chemical DNA synthesis. Eadie, J.S., Davidson, D.S. Nucleic Acids Res. (1987) [Pubmed]
  26. Enhanced high density oligonucleotide array-based sequence analysis using modified nucleoside triphosphates. Hacia, J.G., Woski, S.A., Fidanza, J., Edgemon, K., Hunt, N., McGall, G., Fodor, S.P., Collins, F.S. Nucleic Acids Res. (1998) [Pubmed]
  27. Purine reutilization and synthesis de novo in long-term human lymphocyte cell lines deficient in adenine phosphoribosyltransferase activity. Spector, E.B., Hershfield, M.S., Seegmiller, J.E. Somatic Cell Genet. (1978) [Pubmed]
  28. Substrate analogues for an RNA-editing adenosine deaminase: mechanistic investigation and inhibitor design. Véliz, E.A., Easterwood, L.M., Beal, P.A. J. Am. Chem. Soc. (2003) [Pubmed]
  29. Evidence for three thymine DNA glycosylases in human cell extracts: substrate specificities of thymine DNA glycosylase activities. Lari, S.U., Xu, Y.Z., Day, R.S. Med. Sci. Monit. (2005) [Pubmed]
  30. Crystal structure of calf spleen purine nucleoside phosphorylase in a complex with multisubstrate analogue inhibitor with 2,6-diaminopurine aglycone. Koellner, G., Stroh, A., Raszewski, G., Holý, A., Bzowska, A. Nucleosides Nucleotides Nucleic Acids (2003) [Pubmed]
  31. Phosphonylmethoxyethyl purine derivatives, a new class of anti-human immunodeficiency virus agents. Pauwels, R., Balzarini, J., Schols, D., Baba, M., Desmyter, J., Rosenberg, I., Holy, A., De Clercq, E. Antimicrob. Agents Chemother. (1988) [Pubmed]
  32. High affinity binding of MEF-2C correlates with DNA bending. Meierhans, D., Sieber, M., Allemann, R.K. Nucleic Acids Res. (1997) [Pubmed]
  33. 2,6-diaminopurine in TNA: effect on duplex stabilities and on the efficiency of template-controlled ligations. Wu, X., Delgado, G., Krishnamurthy, R., Eschenmoser, A. Org. Lett. (2002) [Pubmed]
  34. Heritable alterations at the adenine phosphoribosyltransferase (APRT) locus in human lymphoblastoid cell lines. Amundson, S.A., Fortunato, J.E., Liber, H.L. Mutat. Res. (1992) [Pubmed]
WikiGenes - Universities