The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Pirenperona     9-[2-[4-(4- fluorophenyl)carbonyl-1...

Synonyms: Pirenperone, Pirenperonum, Lopac-P-126, Prestwick_858, CHEMBL18331, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pirenperone

 

Psychiatry related information on Pirenperone

 

High impact information on Pirenperone

 

Biological context of Pirenperone

 

Anatomical context of Pirenperone

 

Associations of Pirenperone with other chemical compounds

  • The newly synthesized compound and putative 5-HT2 antagonist ritanserin, but not the structurally related compound R 56413, resembles pirenperone in that it acts as a pure antagonist in an LSD-saline drug discrimination assay in the rat [16].
  • Pirenperone, which is chemically related to ketanserin, has been reported to be a selective serotonin2 (5-HT2) antagonist and a specific d-LSD antagonist [14].
  • The quipazine-induced increase in serum corticosterone was antagonized by 17 different serotonin antagonists; of these, MDL 11939, pirenperone, setoperone, mianserin, LY 281067, ketanserin, ritanserin and clozapine have relatively selective affinity for the 5-HT2 subtype of receptor [17].
  • [3H]Ketanserin binding sites from the soluble extract showed the binding characteristics of S2-receptors: potent 5HT antagonists like pirenperone, methysergide and pipamperone competed for [3H]ketanserin binding at nanomolar concentrations [18].
  • In other experiments, the peripheral serotonin antagonist BW 501C was not able to prevent elevated Tpref produced by 5-HTP, although the specific 5-HT2 antagonist pirenperone, which reaches the CNS as well as the periphery, blocks the 5-HTP elevation of Tpref [19].
 

Gene context of Pirenperone

  • The 5-HT2A receptor antagonist pirenperone did not provide significant indication of an anxiolytic effect on predator assessment activity and postpredator potentiation of contextual defense responses, and had negligible influence on antipredator defensive behavior [4].
  • Tests of antagonism of stimulus control were conducted using the 5-HT1A antagonists (+/-)-pindolol and WAY-100635, and the 5-HT2 receptor antagonist pirenperone [20].
  • 5-HT1A agonists modulate mouse antipredator defensive behavior differently from the 5-HT2A antagonist pirenperone [4].
  • Pirenperone did not alter the rate of 5-HT synthesis in the rat brain [21].
  • Effects of pirenperone and ketanserin on rat prolactin secretion in vivo and in vitro [14].
 

Analytical, diagnostic and therapeutic context of Pirenperone

References

  1. Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Gudelsky, G.A., Koenig, J.I., Meltzer, H.Y. Neuropharmacology (1986) [Pubmed]
  2. Ketanserin and pirenperone attenuate acute morphine withdrawal in rats. Neal, B.S., Sparber, S.B. Eur. J. Pharmacol. (1986) [Pubmed]
  3. Maturational age affects pirenperone dose-response pattern. Goodrich, C., Dillehay, M. Gen. Pharmacol. (1987) [Pubmed]
  4. 5-HT1A agonists modulate mouse antipredator defensive behavior differently from the 5-HT2A antagonist pirenperone. Griebel, G., Blanchard, D.C., Jung, A., Masuda, C.K., Blanchard, R.J. Pharmacol. Biochem. Behav. (1995) [Pubmed]
  5. Pilot study of a specific serotonergic antagonist, pirenperone, in the treatment of anxiety disorders. Ansseau, M., Doumont, A., Thiry, D., Gelders, Y. Acta psychiatrica Belgica. (1983) [Pubmed]
  6. Three-dimensional steric molecular modeling of the 5-hydroxytryptamine3 receptor pharmacophore. Schmidt, A.W., Peroutka, S.J. Mol. Pharmacol. (1989) [Pubmed]
  7. Functional characterization and m-RNA expression of 5-HT receptors mediating contraction in human umbilical artery. Lovren, F., Li, X.F., Lytton, J., Triggle, C. Br. J. Pharmacol. (1999) [Pubmed]
  8. Modulation of the discriminative stimulus properties of cocaine by 5-HT1B and 5-HT2C receptors. Callahan, P.M., Cunningham, K.A. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  9. Pirenperone does not attenuate morphine analgesia in spinal rats. Paul, D., Pinel, J.P. Psychopharmacology (Berl.) (1990) [Pubmed]
  10. Selective effects of pirenperone on analgesia produced by morphine or electrical stimulation at sites in the nucleus raphe magnus and periaqueductal gray. Paul, D., Phillips, A.G. Psychopharmacology (Berl.) (1986) [Pubmed]
  11. Effects of antidepressant drug combinations on cortical 5-HT2 receptors and wet-dog shakes in rats. Koshikawa, F., Koshikawa, N., Stephenson, J.D. Eur. J. Pharmacol. (1985) [Pubmed]
  12. Serotonin antagonist pirenperone inhibits sexual behavior in the male rat: attenuation by quipazine. Mendelson, S.D., Gorzalka, B.B. Pharmacol. Biochem. Behav. (1985) [Pubmed]
  13. Pirenperone effects on temperature preference and body temperature in maturing mice. Dobrea, G.M., Goodrich, C. Physiol. Behav. (1987) [Pubmed]
  14. Effects of pirenperone and ketanserin on rat prolactin secretion in vivo and in vitro. Meltzer, H.Y., Simonovic, M., Gudelsky, G.A. Eur. J. Pharmacol. (1983) [Pubmed]
  15. Attenuation of morphine analgesia by the S2 antagonists, pirenperone and ketanserin. Paul, D., Mana, M.J., Pfaus, J.G., Pinel, J.P. Pharmacol. Biochem. Behav. (1988) [Pubmed]
  16. Behavioral and 5-HT antagonist effects of ritanserin: a pure and selective antagonist of LSD discrimination in rat. Colpaert, F.C., Meert, T.F., Niemegeers, C.J., Janssen, P.A. Psychopharmacology (Berl.) (1985) [Pubmed]
  17. Serotonin receptor subtypes involved in the elevation of serum corticosterone concentration in rats by direct- and indirect-acting serotonin agonists. Fuller, R.W., Snoddy, H.D. Neuroendocrinology (1990) [Pubmed]
  18. Solubilization of serotonin S2-receptors from human brain. Schotte, A., Maloteaux, J.M., Laduron, P.M. Eur. J. Pharmacol. (1984) [Pubmed]
  19. Central versus peripheral effects on temperature preference and body temperature following alteration of 5-HT in maturing mice. Goodrich, C., Lechner, R., Slone, W. Physiol. Behav. (1989) [Pubmed]
  20. The paradox of 5-methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Winter, J.C., Filipink, R.A., Timineri, D., Helsley, S.E., Rabin, R.A. Pharmacol. Biochem. Behav. (2000) [Pubmed]
  21. Inhibition of 5-hydroxytryptamine-mediated behaviour by the putative 5-HT2 antagonist pirenperone. Green, A.R., O'Shaughnessy, K., Hammond, M., Schächter, M., Grahame-Smith, D.G. Neuropharmacology (1983) [Pubmed]
  22. The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat: antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Colpaert, F.C., Janssen, P.A. Neuropharmacology (1983) [Pubmed]
 
WikiGenes - Universities