The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AGN-PC-00YHTY     3,4,5-trihydroxy-6- (hydroxymethyl)oxan-2-one

Synonyms: SureCN333412, AG-K-70086, CHEBI:74105, ANW-43913, NSC-34393, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gluconic lactone

  • Residual glucocerebrosidase activity partially purified from the brain of an adult with type 1 Gaucher's disease was activated threefold by gluconoyl hydrazine, whereas the same enzyme from control brain was unaffected, and eight times less sensitive to gluconolactone inhibition [1].
  • The beta-glucosidases of the three Bacteroides species differed with respect to level of activity, induction pattern, and sensitivity to inhibition by D-glucono-1,5-lactone [2].
  • Simultaneous determination of gluconolactone, galactonolactone and galactitol in urine by reversed-phase liquid chromatography: application to galactosemia [3].
  • Here we present the first experimental example of such an oscillator in a flow reactor, utilizing the base-catalyzed dehydration of methylene glycol as a source of positive feedback (OH- autocatalysis) coupled with the base-catalyzed hydrolysis of gluconolactone for negative feedback (H+ production) [4].
  • The heat resistance of Clostridium sporogenes PA 3679 spores has been studied to establish the influence of acidification with glucono-delta-lactone (GDL) and citric acid on the thermal resistance parameters (DT and z) of this microorganism and to compare their effect with phosphate buffer and natural asparagus as reference substrates [5].
 

High impact information on Gluconic lactone

 

Chemical compound and disease context of Gluconic lactone

 

Biological context of Gluconic lactone

  • The intensity of the d-glucono-1,5-lactone band maximum at 1212 cm(-1) due to CO stretching vibration was measured as a function of time to study the kinetics of d-glucose oxidation [12].
 

Anatomical context of Gluconic lactone

 

Associations of Gluconic lactone with other chemical compounds

 

Gene context of Gluconic lactone

 

Analytical, diagnostic and therapeutic context of Gluconic lactone

  • The formation of electrostatic complexes between sodium caseinate and gum arabic (GA) was studied as a function of pH (2.0-7.0), using slow acidification in situ with glucono-delta-lactone (GDL) or titration with HCl [24].
  • Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus [25].
  • In the development process of a new drug delivery system, RF photosensitized degradation of alginic acid gels is studied by monitoring changes in the turbidity and rheological parameters of alginate/glucono-delta-lactone (GDL) systems with different concentrations of GDL [26].
  • Small angle static light scattering and phase contrast microscopy were used to monitor the phase separation of beta-lg/low-methoxyl or high-methoxyl-pectin (LM- or HM-pectin) dispersions as they were slowly acidified from pH 7 to 4 with glucono-delta-lactone (GDL) [27].

References

  1. Brain glucocerebrosidase in Gaucher's disease. Daniels, L.B., Coyle, P.J., Glew, R.H., Radin, N.S., Labow, R.S. Arch. Neurol. (1982) [Pubmed]
  2. Laminarinase (beta-glucanase) activity in Bacteroides from the human colon. Salyers, A.A., Palmer, J.K., Wilkins, T.D. Appl. Environ. Microbiol. (1977) [Pubmed]
  3. Simultaneous determination of gluconolactone, galactonolactone and galactitol in urine by reversed-phase liquid chromatography: application to galactosemia. Rakotomanga, S., Baillet, A., Pellerin, F., Baylocq-Ferrier, D. J. Chromatogr. (1991) [Pubmed]
  4. An Organic-Based pH Oscillator. Kovacs, K., McIlwaine, R.E., Scott, S.K., Taylor, A.F. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory (2007) [Pubmed]
  5. Glucono-delta-lactone and citric acid as acidulants for lowering the heat resistance of Clostridium sporogenes PA 3679 in HTST working conditions. Silla Santos, M.H., Torres Zarzo, J. Int. J. Food Microbiol. (1995) [Pubmed]
  6. Soluble Aldose Sugar Dehydrogenase from Escherichia coli: A HIGHLY EXPOSED ACTIVE SITE CONFERRING BROAD SUBSTRATE SPECIFICITY. Southall, S.M., Doel, J.J., Richardson, D.J., Oubrie, A. J. Biol. Chem. (2006) [Pubmed]
  7. Purification and characterization of a repressor for the Bacillus subtilis gnt operon. Miwa, Y., Fujita, Y. J. Biol. Chem. (1988) [Pubmed]
  8. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase. Drueckes, P., Boeck, B., Palm, D., Schinzel, R. Biochemistry (1996) [Pubmed]
  9. Biosynthesis of bacterial glycogen. Purification and properties of the Escherichia coli B ADPglucose:1,4-alpha-D-glucan 4-alpha-glucosyltransferase. Fox, J., Kawaguchi, K., Greenberg, E., Preiss, J. Biochemistry (1976) [Pubmed]
  10. Cloning and characterization of gluconolactone oxidase of Penicillium cyaneo-fulvum ATCC 10431 and evaluation of its use for production of D-erythorbic acid in recombinant Pichia pastoris. Salusjärvi, T., Kalkkinen, N., Miasnikov, A.N. Appl. Environ. Microbiol. (2004) [Pubmed]
  11. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system. Ji, A., Gao, P. Appl. Biochem. Biotechnol. (2001) [Pubmed]
  12. Assay for glucose oxidase from Aspergillus niger and Penicillium amagasakiense by Fourier transform infrared spectroscopy. Karmali, K., Karmali, A., Teixeira, A., Curto, M.J. Anal. Biochem. (2004) [Pubmed]
  13. Mechanisms responsible for poor oral bioavailability of paeoniflorin: role of intestinal disposition and interactions with sinomenine. Liu, Z.Q., Jiang, Z.H., Liu, L., Hu, M. Pharm. Res. (2006) [Pubmed]
  14. Novel pathway for alcoholic fermentation of delta-gluconolactone in the yeast Saccharomyces bulderi. van Dijken, J.P., van Tuijl, A., Luttik, M.A., Middelhoven, W.J., Pronk, J.T. J. Bacteriol. (2002) [Pubmed]
  15. Changes in the fluorescence of bound nucleotide during the reaction catalysed by glucose-fructose oxidoreductase from Zymomonas mobilis. Hardman, M.J., Tsao, M., Scopes, R.K. Eur. J. Biochem. (1992) [Pubmed]
  16. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger. Olsen, K., Svensson, B., Christensen, U. Eur. J. Biochem. (1992) [Pubmed]
  17. On the effect of glucono-delta-lactone on the yeast Pichia polymorpha. Villa, T.G., Notario, V., Benítez, T., Villanueva, J.R. Arch. Microbiol. (1976) [Pubmed]
  18. The effect of delta-gluconolactone, an oxidised analogue of glucose, on the nonenzymatic glycation of human and rat haemoglobin. Lindsay, R.M., Smith, W., Lee, W.K., Dominiczak, M.H., Baird, J.D. Clin. Chim. Acta (1997) [Pubmed]
  19. On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase. Gordon, G., Mackow, M.C., Levy, H.R. Arch. Biochem. Biophys. (1995) [Pubmed]
  20. The polyhydroxy acid gluconolactone protects against ultraviolet radiation in an in vitro model of cutaneous photoaging. Bernstein, E.F., Brown, D.B., Schwartz, M.D., Kaidbey, K., Ksenzenko, S.M. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.]. (2004) [Pubmed]
  21. Polymerization and gelation of whey protein isolates at low pH using transglutaminase enzyme. Eissa, A.S., Bisram, S., Khan, S.A. J. Agric. Food Chem. (2004) [Pubmed]
  22. Casein gelation under simultaneous action of transglutaminase and glucono-delta-lactone. Meneńdez, O., Schwarzenbolz, U., Rohm, H., Henle, T. Die Nahrung. (2004) [Pubmed]
  23. Gas chromatographic determination of glucono-delta-lactone in foods. Tsuda, T., Nakanishi, H. Journal - Association of Official Analytical Chemists. (1983) [Pubmed]
  24. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic. Ye, A., Flanagan, J., Singh, H. Biopolymers (2006) [Pubmed]
  25. Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus. Ohnishi, M., Yamashita, T., Hiromi, K. J. Biochem. (1977) [Pubmed]
  26. Rheological characterization and turbidity of riboflavin-photosensitized changes in alginate/GDL systems. Baldursdóttir, S.G., Kjøniksen, A.L. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V. (2005) [Pubmed]
  27. Associative phase separation of beta-lactoglobulin/pectin solutions: a kinetic study by small angle static light scattering. Girard, M., Sanchez, C., Laneuville, S.I., Turgeon, S.L., Gauthier, S.F. Colloids and surfaces. B, Biointerfaces. (2004) [Pubmed]
 
WikiGenes - Universities