The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Nociceptors

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Nociceptors

 

Psychiatry related information on Nociceptors

 

High impact information on Nociceptors

  • Here we review recent advances in the molecular characterization of the capsaicin (vanilloid) receptor, an excitatory ion channel expressed by nociceptors, which contributes to the detection and integration of pain-producing chemical and thermal stimuli [7].
  • Inflammation causes the induction of cyclooxygenase-2 (Cox-2), leading to the release of prostanoids, which sensitize peripheral nociceptor terminals and produce localized pain hypersensitivity [8].
  • The ATP receptor P2X3 is selectively expressed by nociceptors and is one of seven ATP-gated, cation-selective ion channels [9].
  • Nociceptors had currents that were similar to those of heterologously expressed channels containing P2X3 subunits, and had P2X3 immunoreactivity in their sensory endings and cell bodies [10].
  • NMDA-receptor regulation of substance P release from primary afferent nociceptors [11].
 

Chemical compound and disease context of Nociceptors

 

Biological context of Nociceptors

  • We show here that Runx1, a Runt domain transcription factor, is expressed in most nociceptors during embryonic development but in adult mice, becomes restricted to nociceptors marked by expression of the neurotrophin receptor Ret [17].
  • In addition, TNF evoked ongoing activity in 14% of C nociceptors and caused significant and dose-related increases in vascular permeability in glabrous skin [18].
  • Thus, peripheral NMDA receptors not only play an important role in modulating the responses of nociceptors in normal skin, but their upregulation and activation on peripheral nociceptors contributes significantly to the mechanical sensitivity and heat sensitization that accompanies persistent inflammation [19].
  • Primary afferent nociceptors contain and release neuropeptides including calcitonin gene-related peptide, implicated in inflammatory vasodilatation [20].
  • Higher concentrations of muscimol further depolarize GABA(A) receptor-containing terminals, which then initiates action potentials in nociceptors analogous to the appearance of dorsal root reflexes that arise following activation of GABA(A) receptors on central primary afferent terminals [21].
 

Anatomical context of Nociceptors

 

Associations of Nociceptors with chemical compounds

  • Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1 [26].
  • We conclude that PKC-epsilon is principally responsible for sensitization of the heat response in nociceptors by bradykinin [27].
  • It is proposed that glutamate is the neurotransmitter in primary afferents mediating input from different peripheral receptor classes, including nociceptors [28].
  • Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fibers causes retrograde mechanical nociceptor sensitization [24].
  • The final step in the direct restoration of the nociceptor threshold by peripheral administration of morphine and dipyrone was recently suggested to result from the opening of ATP-sensitive K(+) channels (K(ATP)(+)) [29].
 

Gene context of Nociceptors

  • Our results suggest that ASICs are leading acid sensors in human nociceptors and that VR1 participates in the nociception mainly under extremely acidic conditions [30].
  • Brain-derived neurotrophic factor (BDNF) might be released by nociceptors onto spinal neurons and mediate central sensitization associated with chronic pain [31].
  • Together, these findings suggest that BDNF may be released from primary sensory nociceptors with activity, particularly in some persistent pain states, and may then increase the excitability of rostrally projecting second-order systems [32].
  • Using whole-cell patch-clamp recordings, we show that the B1 receptor was not necessary for regulating the noxious heat sensitivity of isolated nociceptors [33].
  • Somatostatin receptors on peripheral primary afferent terminals: inhibition of sensitized nociceptors [34].
 

Analytical, diagnostic and therapeutic context of Nociceptors

  • 7. It is concluded that activity in C mechanoheat (polymodal) nociceptors contributes to the magnitude and duration of pain evoked by intradermal injection of capsaicin [35].
  • In sound stressed animals, bradykinin-hyperalgesia had a more rapid latency to onset and was no longer inhibited by sympathectomy, compatible with a direct effect of bradykinin on primary afferent nociceptors [36].
  • Furthermore, demonstration of glutamate-induced excitation and heat sensitization of nociceptors indicates that local or topical administration of glutamate receptor antagonists may have therapeutic potential for the treatment of pain [37].
  • These results suggest that selective acute tolerance of peripheral morphine analgesia, but not U-69593 analgesia, through MORs and KORs located on polymodal nociceptors, respectively, in the bradykinin-nociception test in mice was mediated through protein kinase C activation [38].
  • In barbiturate-anesthetized male rats, corneal nociceptors were excited by pulses of CO2 gas, and GABAA receptors were activated by microinjections of the selective agonist muscimol [39].

References

  1. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Bautista, D.M., Jordt, S.E., Nikai, T., Tsuruda, P.R., Read, A.J., Poblete, J., Yamoah, E.N., Basbaum, A.I., Julius, D. Cell (2006) [Pubmed]
  2. Noradrenaline hyperalgesia is mediated through interaction with sympathetic postganglionic neurone terminals rather than activation of primary afferent nociceptors. Levine, J.D., Taiwo, Y.O., Collins, S.D., Tam, J.K. Nature (1986) [Pubmed]
  3. Intraneuronal substance P contributes to the severity of experimental arthritis. Levine, J.D., Clark, R., Devor, M., Helms, C., Moskowitz, M.A., Basbaum, A.I. Science (1984) [Pubmed]
  4. Indirect actions of bradykinin on neonatal rat dorsal root ganglion neurones: a role for non-neuronal cells as nociceptors. Heblich, F., England, S., Docherty, R.J. J. Physiol. (Lond.) (2001) [Pubmed]
  5. Neurobiological basis for the use of botulinum toxin in pain therapy. Mense, S. J. Neurol. (2004) [Pubmed]
  6. Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. LaMotte, R.H., Thalhammer, J.G., Torebjörk, H.E., Robinson, C.J. J. Neurosci. (1982) [Pubmed]
  7. The vanilloid receptor: a molecular gateway to the pain pathway. Caterina, M.J., Julius, D. Annu. Rev. Neurosci. (2001) [Pubmed]
  8. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Samad, T.A., Moore, K.A., Sapirstein, A., Billet, S., Allchorne, A., Poole, S., Bonventre, J.V., Woolf, C.J. Nature (2001) [Pubmed]
  9. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Souslova, V., Cesare, P., Ding, Y., Akopian, A.N., Stanfa, L., Suzuki, R., Carpenter, K., Dickenson, A., Boyce, S., Hill, R., Nebenuis-Oosthuizen, D., Smith, A.J., Kidd, E.J., Wood, J.N. Nature (2000) [Pubmed]
  10. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Cook, S.P., Vulchanova, L., Hargreaves, K.M., Elde, R., McCleskey, E.W. Nature (1997) [Pubmed]
  11. NMDA-receptor regulation of substance P release from primary afferent nociceptors. Liu, H., Mantyh, P.W., Basbaum, A.I. Nature (1997) [Pubmed]
  12. Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Magerl, W., Fuchs, P.N., Meyer, R.A., Treede, R.D. Brain (2001) [Pubmed]
  13. Tumour necrosis factor-alpha, interleukin-1beta and interleukin-8 induce persistent mechanical nociceptor hypersensitivity. Sachs, D., Cunha, F.Q., Poole, S., Ferreira, S.H. Pain (2002) [Pubmed]
  14. Low-dose lidocaine reduces secondary hyperalgesia by a central mode of action. Koppert, W., Ostermeier, N., Sittl, R., Weidner, C., Schmelz, M. Pain (2000) [Pubmed]
  15. Peripheral axonal injury results in reduced mu opioid receptor pre- and post-synaptic action in the spinal cord. Kohno, T., Ji, R.R., Ito, N., Allchorne, A.J., Befort, K., Karchewski, L.A., Woolf, C.J. Pain (2005) [Pubmed]
  16. Silver nitrate cauterization: characterization of a new model of corneal inflammation and hyperalgesia in rat. Wenk, H.N., Honda, C.N. Pain (2003) [Pubmed]
  17. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Chen, C.L., Broom, D.C., Liu, Y., de Nooij, J.C., Li, Z., Cen, C., Samad, O.A., Jessell, T.M., Woolf, C.J., Ma, Q. Neuron (2006) [Pubmed]
  18. Nociceptive and inflammatory effects of subcutaneous TNFalpha. Junger, H., Sorkin, L.S. Pain (2000) [Pubmed]
  19. N-methyl-D-aspartate-induced excitation and sensitization of normal and inflamed nociceptors. Du, J., Zhou, S., Coggeshall, R.E., Carlton, S.M. Neuroscience (2003) [Pubmed]
  20. Rat peripheral nerve components release calcitonin gene-related peptide and prostaglandin E2 in response to noxious stimuli: evidence that nervi nervorum are nociceptors. Sauer, S.K., Bove, G.M., Averbeck, B., Reeh, P.W. Neuroscience (1999) [Pubmed]
  21. Peripheral GABA(A) receptors: evidence for peripheral primary afferent depolarization. Carlton, S.M., Zhou, S., Coggeshall, R.E. Neuroscience (1999) [Pubmed]
  22. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Sato, J., Perl, E.R. Science (1991) [Pubmed]
  23. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Price, M.P., McIlwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R., Welsh, M.J. Neuron (2001) [Pubmed]
  24. Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fibers causes retrograde mechanical nociceptor sensitization. Parada, C.A., Vivancos, G.G., Tambeli, C.H., de Queiróz Cunha, F., Ferreira, S.H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  25. Some sensory neurons express neuropeptide Y receptors: potential paracrine inhibition of primary afferent nociceptors following peripheral nerve injury. Mantyh, P.W., Allen, C.J., Rogers, S., DeMaster, E., Ghilardi, J.R., Mosconi, T., Kruger, L., Mannon, P.J., Taylor, I.L., Vigna, S.R. J. Neurosci. (1994) [Pubmed]
  26. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Trevisani, M., Smart, D., Gunthorpe, M.J., Tognetto, M., Barbieri, M., Campi, B., Amadesi, S., Gray, J., Jerman, J.C., Brough, S.J., Owen, D., Smith, G.D., Randall, A.D., Harrison, S., Bianchi, A., Davis, J.B., Geppetti, P. Nat. Neurosci. (2002) [Pubmed]
  27. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Cesare, P., Dekker, L.V., Sardini, A., Parker, P.J., McNaughton, P.A. Neuron (1999) [Pubmed]
  28. Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. De Biasi, S., Rustioni, A. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  29. Peripheral analgesic blockade of hypernociception: activation of arginine/NO/cGMP/protein kinase G/ATP-sensitive K+ channel pathway. Sachs, D., Cunha, F.Q., Ferreira, S.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  30. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. Ugawa, S., Ueda, T., Ishida, Y., Nishigaki, M., Shibata, Y., Shimada, S. J. Clin. Invest. (2002) [Pubmed]
  31. BDNF but not NT-4 is required for normal flexion reflex plasticity and function. Heppenstall, P.A., Lewin, G.R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  32. Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Thompson, S.W., Bennett, D.L., Kerr, B.J., Bradbury, E.J., McMahon, S.B. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  33. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Pesquero, J.B., Araujo, R.C., Heppenstall, P.A., Stucky, C.L., Silva, J.A., Walther, T., Oliveira, S.M., Pesquero, J.L., Paiva, A.C., Calixto, J.B., Lewin, G.R., Bader, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  34. Somatostatin receptors on peripheral primary afferent terminals: inhibition of sensitized nociceptors. Carlton, S.M., Du, J., Davidson, E., Zhou, S., Coggeshall, R.E. Pain (2001) [Pubmed]
  35. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. LaMotte, R.H., Lundberg, L.E., Torebjörk, H.E. J. Physiol. (Lond.) (1992) [Pubmed]
  36. Repeated sound stress enhances inflammatory pain in the rat. Khasar, S.G., Green, P.G., Levine, J.D. Pain (2005) [Pubmed]
  37. Glutamate-induced excitation and sensitization of nociceptors in rat glabrous skin. Du, J., Koltzenburg, M., Carlton, S.M. Pain (2001) [Pubmed]
  38. Protein kinase C-mediated acute tolerance to peripheral mu-opioid analgesia in the bradykinin-nociception test in mice. Inoue, M., Ueda, H. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  39. GABA(A) receptor activation modulates corneal unit activity in rostral and caudal portions of trigeminal subnucleus caudalis. Hirata, H., Okamoto, K., Bereiter, D.A. J. Neurophysiol. (2003) [Pubmed]
 
WikiGenes - Universities