The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Morph1  -  morphine antinociception 1

Mus musculus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Morph1


Psychiatry related information on Morph1


High impact information on Morph1


Biological context of Morph1


Anatomical context of Morph1


Associations of Morph1 with chemical compounds


Regulatory relationships of Morph1


Other interactions of Morph1


Analytical, diagnostic and therapeutic context of Morph1


  1. The NK1 receptor mediates both the hyperalgesia and the resistance to morphine in mice lacking noradrenaline. Jasmin, L., Tien, D., Weinshenker, D., Palmiter, R.D., Green, P.G., Janni, G., Ohara, P.T. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Activation of I(2)-imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors. Sánchez-Blázquez, P., Boronat, M.A., Olmos, G., García-Sevilla, J.A., Garzón, J. Br. J. Pharmacol. (2000) [Pubmed]
  3. A Gi2alpha antisense oligonucleotide differentiates morphine antinociception, constipation and acute dependence in mice. Raffa, R.B., Goode, T.L., Martinez, R.P., Jacoby, H.I. Life Sci. (1996) [Pubmed]
  4. Pharmacogenetic evidence for the involvement of 5-hydroxytryptamine (Serotonin)-1B receptors in the mediation of morphine antinociceptive sensitivity. Hain, H.S., Belknap, J.K., Mogil, J.S. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  5. Non-peptidergic OP4 receptor agonist inhibits morphine antinociception but does not influence morphine dependence. Kotlinska, J., Wichmann, J., Rafalski, P., Talarek, S., Dylag, T., Silberring, J. Neuroreport (2003) [Pubmed]
  6. Phospholipase Cbeta1 modulates pain sensitivity, opioid antinociception and opioid tolerance formation. Liu, N.J., vonGizycki, H., Gintzler, A.R. Brain Res. (2006) [Pubmed]
  7. Contribution of GIRK2-mediated postsynaptic signaling to opiate and alpha 2-adrenergic analgesia and analgesic sex differences. Mitrovic, I., Margeta-Mitrovic, M., Bader, S., Stoffel, M., Jan, L.Y., Basbaum, A.I. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  8. The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit, Coereba flaveola. Theron, E., Hawkins, K., Bermingham, E., Ricklefs, R.E., Mundy, N.I. Curr. Biol. (2001) [Pubmed]
  9. Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Mogil, J.S., Chesler, E.J., Wilson, S.G., Juraska, J.M., Sternberg, W.F. Neuroscience and biobehavioral reviews. (2000) [Pubmed]
  10. Quantitative trait loci influencing morphine antinociception in four mapping populations. Bergeson, S.E., Helms, M.L., O'Toole, L.A., Jarvis, M.W., Hain, H.S., Mogil, J.S., Belknap, J.K. Mamm. Genome (2001) [Pubmed]
  11. Administration of myr(+)-G(i2)alpha subunits prevents acute tolerance (tachyphylaxis) to mu-opioid effects in mice. Garzón, J., Sánchez-Blázquez, P. Neuropharmacology (2001) [Pubmed]
  12. Antinociceptive activity of combination of morphine and NMDA receptor antagonists depends on the inter-injection interval. Belozertseva, I.V., Dravolina, O.A., Neznanova, O.N., Danysz, W., Bespalov, A.Y. Eur. J. Pharmacol. (2000) [Pubmed]
  13. Effects of acute administration of L-arginine on morphine antinociception and morphine distribution in central and peripheral tissues of mice. Bhargava, H.N., Bian, J.T. Pharmacol. Biochem. Behav. (1998) [Pubmed]
  14. dextro-Naloxone or levo-naloxone reverses the attenuation of morphine antinociception induced by lipopolysaccharide in the mouse spinal cord via a non-opioid mechanism. Wu, H.E., Sun, H.S., Cheng, C.W., Terashvili, M., Tseng, L.F. Eur. J. Neurosci. (2006) [Pubmed]
  15. Antinociception induced by intraperitoneal injection of gentamicin in rats and mice. Prado, W.A., Tonussi, C.R., Rego, E.M., Corrado, A.P. Pain (1990) [Pubmed]
  16. Mechanism of attenuation of morphine antinociception by chronic treatment with L-arginine. Bhargava, H.N., Bian, J.T., Kumar, S. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  17. Inhibitory effects of MPEP, an mGluR5 antagonist, and memantine, an N-methyl-D-aspartate receptor antagonist, on morphine antinociceptive tolerance in mice. Kozela, E., Pilc, A., Popik, P. Psychopharmacology (Berl.) (2003) [Pubmed]
  18. Differential effects of divalent cations, cation chelators and an ionophore (A23187) on morphine and dibutyryl guanosine 3': 5'-cyclic monophosphate antinociception. Vocci, F.J., Welch, S.P., Dewey, W.L. J. Pharmacol. Exp. Ther. (1980) [Pubmed]
  19. Spinal involvement of both dynorphin A and Met-enkephalin in the antinociception induced by intracerebroventricularly administered bremazocine but not morphine in the mouse. Tseng, L.F., Collins, K.A. J. Pharmacol. Exp. Ther. (1993) [Pubmed]
  20. Evidence for a role of N-methyl-D-aspartate receptors in L-arginine-induced attenuation of morphine antinociception. Bhargava, H.N., Sharma, S.S., Bian, J.T. Brain Res. (1998) [Pubmed]
  21. Antagonism of morphine antinociception by intrathecally administered corticotropin-releasing factor in mice. Song, Z.H., Takemori, A.E. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  22. Antisense oligodeoxynucleotide to the CCKB receptor produces naltrindole- and [Leu5]enkephalin antiserum-sensitive enhancement of morphine antinociception. Vanderah, T.W., Lai, J., Yamamura, H.I., Porreca, F. Neuroreport (1994) [Pubmed]
  23. Effects of 5-HT receptor antagonists on morphine-induced tolerance in mice. Zarrindast, M.R., Sajedian, M., Rezayat, M., Ghazi-Khansari, M. Eur. J. Pharmacol. (1995) [Pubmed]
  24. Caerulein may potentiate morphine-induced antinociception by cholecystokinin-A and/or cholecystokinin-B receptor mechanisms. Rezayat, M., Oreizi, S., Zarrindast, M.R. Gen. Pharmacol. (1997) [Pubmed]
  25. Antinociceptive activity of salmon calcitonin injected intraventricularly in mice: modulation of morphine antinociception. Welch, S.P., Cooper, C.W., Dewey, W.L. J. Pharmacol. Exp. Ther. (1986) [Pubmed]
  26. Role of nitric oxide in the induction and expression of morphine tolerance and dependence in mice. Dambisya, Y.M., Lee, T.L. Br. J. Pharmacol. (1996) [Pubmed]
  27. Alterations in L-type calcium channels in the brain and spinal cord of acutely treated and morphine-tolerant mice. Bernstein, M.A., Welch, S.P. Brain Res. (1995) [Pubmed]
  28. Morphine dependence with or without tolerance in formalin-treated mice: further evidence for the dissociation. Rahman, A.F., Takahashi, M., Kaneto, H. Jpn. J. Pharmacol. (1994) [Pubmed]
  29. Effects L-NG-nitro arginine methyl ester (L-NAME), L-NG-monomethyl arginine (L-NMMA) and L-arginine on the antinociceptive effects of morphine in mice. Dambisya, Y.M., Lee, T.L. Methods and findings in experimental and clinical pharmacology. (1995) [Pubmed]
WikiGenes - Universities