The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Crh  -  corticotropin releasing hormone

Mus musculus

Synonyms: CRF, Corticoliberin, Corticotropin-releasing factor, Corticotropin-releasing hormone, Gm1347, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Crh

 

Psychiatry related information on Crh

 

High impact information on Crh

 

Chemical compound and disease context of Crh

 

Biological context of Crh

  • Our findings suggest that during inflammation, IL-6 most likely compensates for the effects of CRH deficiency on food intake [19].
  • However, CRH and vasopressin (AVP) mRNA levels in the transgenic mice are increased by 82 and 35%, respectively, to compensate for the excess CRH-BP, consistent with the idea that CRH-BP levels are important for homeostasis [20].
  • The data show that long-term GR dysfunction can be associated with reduced activity of CRH neurons in the PVN and decreased sensitivity of pituitary CRH-R1 mRNA to stimulus-induced downregulation [21].
  • Corticotropin-releasing hormone is a main regulator of mammalian stress response by stimulating pituitary proopiomelanocortin (POMC) gene expression, and thus adrenocorticotropic hormone (ACTH) secretion, which then causes glucocorticoid release from the adrenal [22].
  • After treatment with CRH, intracellular POMC-luciferase activity was significantly higher from the stimulation observed with transfection of the parental POMC-luciferase construct [22].
 

Anatomical context of Crh

 

Associations of Crh with chemical compounds

  • In contrast, toxin A administration in Crh(-/-) mice fails to result in an increased SP content [2].
  • We demonstrate that during inflammation CRH is required for a normal adrenocorticotropin hormone (ACTH) increase but not for adrenal corticosterone rise [19].
  • These CRF-stimulated effects were also blocked by the glucocorticoid dexamethasone [1].
  • CRF-induced increases in phospholipid methylation and ACTH secretion were reduced when cells were treated with the phospholipid methyltransferase inhibitors 3-deazaadenosine and L-homocysteine thiolactone [1].
  • The methionine sulfoxide derivative of CRF was less potent than CRF was in stimulating both phospholipid methylation and hormone secretion, and the COOH-terminal free acid analogue of CRF had no effect on either process [1].
 

Physical interactions of Crh

  • Although DEX treatment of AtT-20 cells did not affect AP-1 DNA binding capacity of nuclear extracts, DEX pretreatment blunted the stimulation of AP-1 binding in response to CRF [25].
  • Further, CRF has been shown to contribute to excitability of hippocampal neurons during embryonic development by binding to CRF-R1; depolarization induced excitability appears to be critical for cell survival [26].
  • CRH and PKA rapidly increase nuclear DNA binding activity of NGFI-B dimers but not monomers [27].
 

Co-localisations of Crh

  • The activity of the PVN CRF cells was estimated from the number of PVN cells colocalizing CRF mRNA and the protein Fos [28].
 

Regulatory relationships of Crh

 

Other interactions of Crh

 

Analytical, diagnostic and therapeutic context of Crh

References

  1. Corticotropin-releasing factor stimulates phospholipid methylation and corticotropin secretion in mouse pituitary tumor cells. Hook, V.Y., Heisler, S., Axelrod, J. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  2. Corticotropin-releasing hormone (CRH) requirement in Clostridium difficile toxin A-mediated intestinal inflammation. Anton, P.M., Gay, J., Mykoniatis, A., Pan, A., O'Brien, M., Brown, D., Karalis, K., Pothoulakis, C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  3. Reduced cerebral injury in CRH-R1 deficient mice after focal ischemia: a potential link to microglia and atrocytes that express CRH-R1. Stevens, S.L., Shaw, T.E., Dykhuizen, E., Lessov, N.S., Hill, J.K., Wurst, W., Stenzel-Poore, M.P. J. Cereb. Blood Flow Metab. (2003) [Pubmed]
  4. Modulation of urocortin-induced hypophagia and weight loss by corticotropin-releasing factor receptor 1 deficiency in mice. Bradbury, M.J., McBurnie, M.I., Denton, D.A., Lee, K.F., Vale, W.W. Endocrinology (2000) [Pubmed]
  5. Corticotropin-releasing factor is cytoprotective in Xenopus tadpole tail: coordination of ligand, receptor, and binding protein in tail muscle cell survival. Boorse, G.C., Kholdani, C.A., Seasholtz, A.F., Denver, R.J. Endocrinology (2006) [Pubmed]
  6. The corticotropin-releasing factor receptor-1 pathway mediates the negative affective states of opiate withdrawal. Contarino, A., Papaleo, F. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Dissociation of locomotor activation and suppression of food intake induced by CRF in CRFR1-deficient mice. Contarino, A., Dellu, F., Koob, G.F., Smith, G.W., Lee, K.F., Vale, W.W., Gold, L.H. Endocrinology (2000) [Pubmed]
  8. Identification of molecules potentially involved in mediating the in vivo actions of the corticotropin-releasing hormone receptor 1 antagonist, NBI30775 (R121919). Post, A., Ohl, F., Almeida, O.F., Binder, E.B., Rücker, M., Welt, S., Binder, E., Holsboer, F., Sillaber, I. Psychopharmacology (Berl.) (2005) [Pubmed]
  9. Differential disinhibition of the neonatal hypothalamic- pituitary-adrenal axis in brain-specific CRH receptor 1-knockout mice. Schmidt, M.V., Deussing, J.M., Oitzl, M.S., Ohl, F., Levine, S., Wurst, W., Holsboer, F., M??ller, M.B., de Kloet, E.R. Eur. J. Neurosci. (2006) [Pubmed]
  10. Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Vetter, D.E., Li, C., Zhao, L., Contarino, A., Liberman, M.C., Smith, G.W., Marchuk, Y., Koob, G.F., Heinemann, S.F., Vale, W., Lee, K.F. Nat. Genet. (2002) [Pubmed]
  11. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Bale, T.L., Contarino, A., Smith, G.W., Chan, R., Gold, L.H., Sawchenko, P.E., Koob, G.F., Vale, W.W., Lee, K.F. Nat. Genet. (2000) [Pubmed]
  12. Adiponectin acts in the brain to decrease body weight. Qi, Y., Takahashi, N., Hileman, S.M., Patel, H.R., Berg, A.H., Pajvani, U.B., Scherer, P.E., Ahima, R.S. Nat. Med. (2004) [Pubmed]
  13. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Muglia, L., Jacobson, L., Dikkes, P., Majzoub, J.A. Nature (1995) [Pubmed]
  14. Interleukin-6 is a needed proinflammatory cytokine in the prolonged neural activity and transcriptional activation of corticotropin-releasing factor during endotoxemia. Vallières, L., Rivest, S. Endocrinology (1999) [Pubmed]
  15. CRH deficiency impairs but does not block pituitary-adrenal responses to diverse stressors. Jacobson, L., Muglia, L.J., Weninger, S.C., Pac¿ak, K., Majzoub, J.A. Neuroendocrinology (2000) [Pubmed]
  16. Corticotropin-releasing factor-induced adrenocorticotropin hormone release and synthesis is blocked by incorporation of the inhibitor of cyclic AMP-dependent protein kinase into anterior pituitary tumor cells by liposomes. Reisine, T., Rougon, G., Barbet, J., Affolter, H.U. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  17. Identification of a corticotropin-releasing factor-binding protein in the plasma membrane of AtT-20 mouse pituitary tumor cells and its regulation by dexamethasone. Rosendale, B.E., Jarrett, D.B., Robinson, A.G. Endocrinology (1987) [Pubmed]
  18. Reduced corticotropin-releasing factor and enhanced vasopressin gene expression in brains of mice with autoimmunity-induced behavioral dysfunction. Sakić, B., Laflamme, N., Crnic, L.S., Szechtman, H., Denburg, J.A., Rivest, S. J. Neuroimmunol. (1999) [Pubmed]
  19. Corticotropin-releasing hormone regulates IL-6 expression during inflammation. Venihaki, M., Dikkes, P., Carrigan, A., Karalis, K.P. J. Clin. Invest. (2001) [Pubmed]
  20. Excess corticotropin releasing hormone-binding protein in the hypothalamic-pituitary-adrenal axis in transgenic mice. Burrows, H.L., Nakajima, M., Lesh, J.S., Goosens, K.A., Samuelson, L.C., Inui, A., Camper, S.A., Seasholtz, A.F. J. Clin. Invest. (1998) [Pubmed]
  21. Reduced activity of hypothalamic corticotropin-releasing hormone neurons in transgenic mice with impaired glucocorticoid receptor function. Dijkstra, I., Tilders, F.J., Aguilera, G., Kiss, A., Rabadan-Diehl, C., Barden, N., Karanth, S., Holsboer, F., Reul, J.M. J. Neurosci. (1998) [Pubmed]
  22. NF-kappaB participates in the corticotropin-releasing, hormone-induced regulation of the pituitary proopiomelanocortin gene. Karalis, K.P., Venihaki, M., Zhao, J., van Vlerken, L.E., Chandras, C. J. Biol. Chem. (2004) [Pubmed]
  23. Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Refojo, D., Echenique, C., Müller, M.B., Reul, J.M., Deussing, J.M., Wurst, W., Sillaber, I., Paez-Pereda, M., Holsboer, F., Arzt, E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  24. Corticotropin-releasing factor and the urocortins induce the expression of TLR4 in macrophages via activation of the transcription factors PU.1 and AP-1. Tsatsanis, C., Androulidaki, A., Alissafi, T., Charalampopoulos, I., Dermitzaki, E., Roger, T., Gravanis, A., Margioris, A.N. J. Immunol. (2006) [Pubmed]
  25. Glucocorticoid regulation of c-fos, c-jun and transcription factor AP-1 in the AtT-20 corticotrope cell. Autelitano, D.J. J. Neuroendocrinol. (1994) [Pubmed]
  26. Localization of the type 1 corticotropin releasing factor receptor (CRF-R1) in the embryonic mouse cerebellum. King, J.S., Bishop, G.A. J. Neurocytol. (2003) [Pubmed]
  27. Dimer-specific potentiation of NGFI-B (Nur77) transcriptional activity by the protein kinase A pathway and AF-1-dependent coactivator recruitment. Maira, M., Martens, C., Batsché, E., Gauthier, Y., Drouin, J. Mol. Cell. Biol. (2003) [Pubmed]
  28. Effects of leptin on corticotropin-releasing factor (CRF) synthesis and CRF neuron activation in the paraventricular hypothalamic nucleus of obese (ob/ob) mice. Huang, Q., Rivest, R., Richard, D. Endocrinology (1998) [Pubmed]
  29. Leptin rapidly inhibits hypothalamic neuropeptide Y secretion and stimulates corticotropin-releasing hormone secretion in adrenalectomized mice. Jang, M., Mistry, A., Swick, A.G., Romsos, D.R. J. Nutr. (2000) [Pubmed]
  30. Corticotropin-releasing hormone stimulates the expression of the steroidogenic acute regulatory protein in MA-10 mouse cells. Huang, B.M., Stocco, D.M., Li, P.H., Yang, H.Y., Wu, C.M., Norman, R.L. Biol. Reprod. (1997) [Pubmed]
  31. Effects of leptin and corticosterone on the expression of corticotropin-releasing hormone, agouti-related protein, and proopiomelanocortin in the brain of ob/ob mouse. Arvaniti, K., Huang, Q., Richard, D. Neuroendocrinology (2001) [Pubmed]
  32. Urocortin 2 suppresses host resistance to Listeria monocytogenes infection via up-regulation of interleukin-10. Sashinami, H., Kageyama, K., Suda, T., Nakane, A. Endocrinology (2005) [Pubmed]
  33. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Lolait, S.J., Stewart, L.Q., Jessop, D.S., Young, W.S., O'Carroll, A.M. Endocrinology (2007) [Pubmed]
  34. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Brar, B.K., Jonassen, A.K., Egorina, E.M., Chen, A., Negro, A., Perrin, M.H., Mjøs, O.D., Latchman, D.S., Lee, K.F., Vale, W. Endocrinology (2004) [Pubmed]
  35. Severity of the catabolic condition differentially modulates hypothalamic expression of growth hormone-releasing hormone in the fasted mouse: potential role of neuropeptide y and corticotropin-releasing hormone. Luque, R.M., Park, S., Kineman, R.D. Endocrinology (2007) [Pubmed]
  36. Animal models of CRH excess and CRH receptor deficiency display altered adaptations to stress. Coste, S.C., Murray, S.E., Stenzel-Poore, M.P. Peptides (2001) [Pubmed]
  37. Corticotropin-releasing factor type-1 receptor mRNA is not induced in mouse hypothalamus by either stress or osmotic stimulation. Imaki, T., Katsumata, H., Konishi, S.I., Kasagi, Y., Minami, S. J. Neuroendocrinol. (2003) [Pubmed]
  38. Ethanol augments GABAergic transmission in the central amygdala via CRF1 receptors. Nie, Z., Schweitzer, P., Roberts, A.J., Madamba, S.G., Moore, S.D., Siggins, G.R. Science (2004) [Pubmed]
 
WikiGenes - Universities