The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

GLIS1  -  GLIS family zinc finger 1

Homo sapiens

Synonyms: FLJ36155, GLI-similar 1, Zinc finger protein GLIS1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of GLIS1

 

High impact information on GLIS1

  • Intrinsic connections within the tree shrew (Tupaia glis) visual cortex (area 17) are organized in periodic stripelike patterns within layers I, II, and III [5].
  • To obtain insight into its function, Glis1 and a C-terminal deletion mutant Glis1DeltaC were expressed in NHEK-HPV cells and changes in epidermal differentiation and gene expression examined [1].
  • Our results, partly in contradiction to earlier studies using different tracing techniques in another tree shrew species (Tupaia glis), reveal that hypothalamic nuclei, in particular the SCN, are contacted by retino-afferent fibers which are thought to mediate the effects of light to the endogenous 'clock' and to parts of the neuroendocrine system [6].
  • Previous studies in tree shrews (Tupaia glis belangeri) suggest that regulation of the mechanical properties of the sclera may be an important part of the mechanism that controls the axial elongation rate in this mammal [7].
  • It then presents data on the fat cell number and size in the retroperitoneal and gonadal fat depots of dormice, Glis glis, over the course of their body weight cycles [8].
 

Biological context of GLIS1

  • GLIS3 is an 83.8 kDa nuclear protein containing five C2H2-type Krüppel-like zinc finger motifs that exhibit 93% identity with those of GLIS1, however, little homology exists outside their zinc finger domains [9].
  • Amino acid sequences of the aplpha and beta chains of adult hemoglobin of the tupai, Tupaia glis [10].
  • In the present study we examine the same tissues in euthermic and hibernating individuals of the edible dormouse Glis glis in order to investigate possible modifications of nuclear structural constituents occurring during hibernation in this species [11].
  • Moreover, meiotic studies demonstrated that a synaptonemal complex is formed at one telomeric end of the XY bivalent during the pachytene stage of meiosis in a male T. glis specimen [12].
 

Anatomical context of GLIS1

 

Associations of GLIS1 with chemical compounds

  • Globin prepared from hemoglobin of adult tupai (Tupaia glis) was separated into alpha and beta polypeptide chains by CM-cellulose column chromatography [10].
 

Other interactions of GLIS1

  • GLIS3, a novel member of the GLIS subfamily of Krüppel-like zinc finger proteins with repressor and activation functions [9].
 

Analytical, diagnostic and therapeutic context of GLIS1

References

  1. Regulatory role for Krüppel-like zinc-finger protein Gli-similar 1 (Glis1) in PMA-treated and psoriatic epidermis. Nakanishi, G., Kim, Y.S., Nakajima, T., Jetten, A.M. J. Invest. Dermatol. (2006) [Pubmed]
  2. Amplifying role of edible dormice in Lyme disease transmission in central Europe. Matuschka, F.R., Eiffert, H., Ohlenbusch, A., Spielman, A. J. Infect. Dis. (1994) [Pubmed]
  3. Pituitary beta-endorphin content during spontaneous food intake and body weight cycles in the dormouse, Glis glis. Melnyk, R.B., Martin, J.M. Regul. Pept. (1983) [Pubmed]
  4. 5-Fluorouracil plus 5-methyltetrahydrofolate in advanced pancreatic cancer. GLISP (Gruppo Ligure Studio Pancreas). Bolli, E., Saccomanno, S., Mondini, G., Aschele, C., Guglielmi, A., Ligas, B., Connio, M., Mori, A., Rosso, R., Sobrero, A. Cancer Chemother. Pharmacol. (1995) [Pubmed]
  5. Widespread periodic intrinsic connections in the tree shrew visual cortex. Rockland, K.S., Lund, J.S. Science (1982) [Pubmed]
  6. Anterograde tracing of retinal afferents to the tree shrew hypothalamus and raphe. Reuss, S., Fuchs, E. Brain Res. (2000) [Pubmed]
  7. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Siegwart, J.T., Norton, T.T. Vision Res. (1999) [Pubmed]
  8. Cycles of body fat in hibernators. Mrosovsky, N., Faust, I.M. International journal of obesity. (1985) [Pubmed]
  9. GLIS3, a novel member of the GLIS subfamily of Krüppel-like zinc finger proteins with repressor and activation functions. Kim, Y.S., Nakanishi, G., Lewandoski, M., Jetten, A.M. Nucleic Acids Res. (2003) [Pubmed]
  10. Amino acid sequences of the aplpha and beta chains of adult hemoglobin of the tupai, Tupaia glis. Maita, T., Tanaka, E., Goodman, M., Matsuda, G. J. Biochem. (1977) [Pubmed]
  11. Nuclear bodies are usual constituents in tissues of hibernating dormice. Malatesta, M., Cardinali, A., Battistelli, S., Zancanaro, C., Martin, T.E., Fakan, S., Gazzanelli, G. Anat. Rec. (1999) [Pubmed]
  12. An X-Y homologous pairing segment in tree shrews (Tupaia). Toder, R., Rumpler, Y., von Holst, D., Schempp, W. Cytogenet. Cell Genet. (1993) [Pubmed]
  13. Direct visual input to the limbic system: crossed retinal projections to the nucleus anterodorsalis thalami in the tree shrew. Conrad, C.D., Stumpf, W.E. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1975) [Pubmed]
  14. An experimental electron microscopical study of a direct retino-pulvinar pathway in the tree shrew. Somogyi, G., Hajdu, F., Hassler, R., Wagner, A. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1981) [Pubmed]
  15. Stereo architecture of the connective tissue cores of the lingual papillae in the treeshrew (Tupaia glis). Kobayashi, K., Wanichanon, C. Anat. Embryol. (1992) [Pubmed]
  16. A comparative survey of the mast cells of the mammalian brain. Kiernan, J.A. J. Anat. (1976) [Pubmed]
  17. Laminar organization of tree shrew dorsal lateral geniculate nucleus. Conway, J.L., Schiller, P.H. J. Neurophysiol. (1983) [Pubmed]
  18. Current status of food-borne parasitic zoonoses in Singapore. Singh, M., Hian, Y.E., Lay-Hoon, C. Southeast Asian J. Trop. Med. Public Health (1991) [Pubmed]
 
WikiGenes - Universities