The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tupaiidae

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tupaiidae

 

Psychiatry related information on Tupaiidae

 

High impact information on Tupaiidae

  • To investigate potential involvement of NO in cone photoreceptor activity, we utilized NADPH diaphorase histochemistry to study the cone-dominated retina of the tree shrew (Tupaia belangeri) [8].
  • The localization of the postsynaptic density protein PSD-95 was studied in different mammalian retinae (rat, monkey, and tree shrew) by using immunocytochemical methods [9].
  • Here we combine optical imaging of intrinsic signals with small extracellular injections of biocytin to assess quantitatively the specificity of horizontal connections with respect to both the map of orientation preference and the map of visual space in tree shrew V1 [10].
  • Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation [11].
  • Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews [12].
 

Biological context of Tupaiidae

 

Anatomical context of Tupaiidae

 

Associations of Tupaiidae with chemical compounds

  • In experimental tree shrews, psychosocial conflict caused elevated cortisol levels during the stress phases [6].
  • Awake experimental tree shrews (freely moving, restrained, or paralyzed) were given injections of deoxyglucose label and then stimulated with vertical, horizontal, or oblique stripes for 45--75 min [23].
  • Male tree shrews were submitted to subordination stress for 28 days, while during the last 18 days, one group was treated with testosterone and one with vehicle [24].
  • The frequent occurrence of GABAergic synapses on pinealocytes in the tree shrew suggests that GABA released at these synapses directly controls activity of pinealocytes of this animal [25].
  • In tree shrews, alpha 2-adrenoceptors can be autoradiographically quantified in regions which are not labeled in the rat, although former data predicted the existence of such receptors, e.g., in the area of the adrenaline cell group C1 [26].
 

Gene context of Tupaiidae

 

Analytical, diagnostic and therapeutic context of Tupaiidae

References

  1. Mutations in the p53 tumor suppressor gene in tree shrew hepatocellular carcinoma associated with hepatitis B virus infection and intake of aflatoxin B1. Park, U.S., Su, J.J., Ban, K.C., Qin, L., Lee, E.H., Lee, Y.I. Gene (2000) [Pubmed]
  2. How applicable are animal myopia models to human juvenile onset myopia? Zadnik, K., Mutti, D.O. Vision Res. (1995) [Pubmed]
  3. Prevention of collagen crosslinking increases form-deprivation myopia in tree shrew. McBrien, N.A., Norton, T.T. Exp. Eye Res. (1994) [Pubmed]
  4. Tumors of the respiratory tract observed at the German Primate Center, 1978-1994. Brack, M., Schwartz, P., Heinrichs, T., Schultz, M., Fuchs, E. J. Med. Primatol. (1996) [Pubmed]
  5. Analysis of Tupaia herpesvirus proteins by one- and two-dimensional gel electrophoresis. Flügel, R.M., Faissner, A., Koch, H.G., Darai, G. Dev. Biol. Stand. (1982) [Pubmed]
  6. Memory performance in tree shrews: effects of stressful experiences. Ohl, F., Fuchs, E. Neuroscience and biobehavioral reviews. (1998) [Pubmed]
  7. Diazepam has no beneficial effects on stress-induced behavioural and endocrine changes in male tree shrews. Van Kampen, M., Schmitt, U., Hiemke, C., Fuchs, E. Pharmacol. Biochem. Behav. (2000) [Pubmed]
  8. Differentiation of short-wavelength-sensitive cones by NADPH diaphorase histochemistry. Petry, H.M., Murphy, H.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  9. Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. Koulen, P., Fletcher, E.L., Craven, S.E., Bredt, D.S., Wässle, H. J. Neurosci. (1998) [Pubmed]
  10. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D. J. Neurosci. (1997) [Pubmed]
  11. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. Gould, E., McEwen, B.S., Tanapat, P., Galea, L.A., Fuchs, E. J. Neurosci. (1997) [Pubmed]
  12. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. Magariños, A.M., McEwen, B.S., Flügge, G., Fuchs, E. J. Neurosci. (1996) [Pubmed]
  13. Chronic psychosocial stress regulates the expression of both GR and MR mRNA in the hippocampal formation of tree shrews. Meyer, U., van Kampen, M., Isovich, E., Flügge, G., Fuchs, E. Hippocampus. (2001) [Pubmed]
  14. Binding sites of atrial natriuretic peptide in tree shrew adrenal gland. Fuchs, E., Shigematsu, K., Saavedra, J.M. Peptides (1986) [Pubmed]
  15. MHC class I genes of the tree shrew Tupaia belangeri. Flügge, P., Fuchs, E., Günther, E., Walter, L. Immunogenetics (2002) [Pubmed]
  16. Cloning of glucocorticoid receptor and mineralocorticoid receptor cDNA and gene expression in the central nervous system of the tree shrew (Tupaia belangeri). Meyer, U., Kruhoffer, M., Flügge, G., Fuchs, E. Brain Res. Mol. Brain Res. (1998) [Pubmed]
  17. Urinary immunoreactive androgen levels during sexual development in the male tree-shrew (Tupaia belangeri). Collins, P.M., Dobyns, R.J., Tsang, W.N. Comparative biochemistry and physiology. A, Comparative physiology. (1989) [Pubmed]
  18. The time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery. Siegwart, J.T., Norton, T.T. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
  19. Scanning electron microscopic study on pineal vascularization of the common tree shrew (Tupaia glis). Chunhabundit, P., Somana, R. J. Pineal Res. (1991) [Pubmed]
  20. Opioidergic innervation of the tree shrew pineal gland: an immunohistochemical study. Phansuwan-Pujito, P., Jitjaijamjang, W., Ebadi, M., Govitrapong, P., Møller, M. J. Pineal Res. (1998) [Pubmed]
  21. Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol. Alfonso, J., Agüero, F., Sanchez, D.O., Flugge, G., Fuchs, E., Frasch, A.C., Pollevick, G.D. J. Neurosci. Res. (2004) [Pubmed]
  22. Characterization of prostaglandin E2 binding to uterine membranes from baboon, rabbit and tree shrew (Tupaia belangeri). Hodam, J.R., Snabes, M.C., Kuehl, T.J., Jones, M.A., Harper, M.J. J. Mol. Endocrinol. (1989) [Pubmed]
  23. Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping. Humphrey, A.L., Skeen, L.C., Norton, T.T. J. Comp. Neurol. (1980) [Pubmed]
  24. 5HT1A-receptors and behaviour under chronic stress: selective counteraction by testosterone. Flügge, G., Kramer, M., Rensing, S., Fuchs, E. Eur. J. Neurosci. (1998) [Pubmed]
  25. Central GABAergic innervation of the mammalian pineal gland: a light and electron microscopic immunocytochemical investigation in rodent and nonrodent species. Sakai, Y., Hira, Y., Matsushima, S. J. Comp. Neurol. (2001) [Pubmed]
  26. Alpha 2-adrenergic binding sites in the medulla oblongata of tree shrews demonstrated by in vitro autoradiography: species related differences in comparison to the rat. Flügge, G., Jurdzinski, A., Brandt, S., Fuchs, E. J. Comp. Neurol. (1990) [Pubmed]
  27. Corticotropin-releasing factor receptor type 1 from Tupaia belangeri--cloning, functional expression and tissue distribution. Palchaudhuri, M.R., Wille, S., Mevenkamp, G., Spiess, J., Fuchs, E., Dautzenberg, F.M. Eur. J. Biochem. (1998) [Pubmed]
  28. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Guggenheim, J.A., McBrien, N.A. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  29. Origin of butyrylcholinesterase in the lateral geniculate nucleus of tree shrew. Horn, K.M., Carey, R.G. Brain Res. (1988) [Pubmed]
  30. Localization of nitric oxide synthase in the tree shrew retina. Cao, Q.L., Murphy, H.A., Petry, H.M. Vis. Neurosci. (1999) [Pubmed]
  31. Reduction of aflatoxin B(1) adduct biomarkers by oltipraz in the tree shrew (Tupaia belangeri chinensis). Li, Y., Su, J., Qin, L., Egner, P.A., Wang, J., Groopman, J.D., Kensler, T.W., Roebuck, B.D. Cancer Lett. (2000) [Pubmed]
 
WikiGenes - Universities