The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Tupaia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tupaia

 

High impact information on Tupaia

 

Biological context of Tupaia

  • Transfection of CHO cells with human or tupaia SR-BI but not mouse SR-BI cDNA resulted in cellular E2 binding, suggesting that E2-binding domains between human and tupaia SR-BI are highly conserved [2].
  • Kinetics of Tupaia herpesvirus strain 2 (THV-2) DNA synthesis was measured by labeling with radioactive thymidine and determining the amount of newly synthesized DNA [8].
  • It resembles the involucrin coding region of other non-anthropoid mammals in possessing a segment of related, short tandem repeats at a defined location, but in Tupaia, there has been recent serial duplication of a repeat into which a cysteine codon had earlier been introduced [9].
  • One tupaia TTV isolate (Tbc-TTV14) consisted of only 2199 nucleotides (nt) and had three open reading frames (ORFs), spanning 1506 nt (ORF1), 177 nt (ORF2) and 642 nt (ORF3), which were in the same orientation as the ORFs of the human prototype TTV (TA278) [3].
  • Amino acid sequences of the aplpha and beta chains of adult hemoglobin of the tupai, Tupaia glis [10].
 

Anatomical context of Tupaia

 

Associations of Tupaia with chemical compounds

 

Gene context of Tupaia

 

Analytical, diagnostic and therapeutic context of Tupaia

References

  1. Inhibitory effect of adefovir and lamivudine on the initiation of hepatitis B virus infection in primary tupaia hepatocytes. Köck, J., Baumert, T.F., Delaney, W.E., Blum, H.E., von Weizsäcker, F. Hepatology (2003) [Pubmed]
  2. Scavenger receptor class B type I and hepatitis C virus infection of primary tupaia hepatocytes. Barth, H., Cerino, R., Arcuri, M., Hoffmann, M., Schürmann, P., Adah, M.I., Gissler, B., Zhao, X., Ghisetti, V., Lavezzo, B., Blum, H.E., von Weizsäcker, F., Vitelli, A., Scarselli, E., Baumert, T.F. J. Virol. (2005) [Pubmed]
  3. Genomic and evolutionary characterization of TT virus (TTV) in tupaias and comparison with species-specific TTVs in humans and non-human primates. Okamoto, H., Nishizawa, T., Takahashi, M., Tawara, A., Peng, Y., Kishimoto, J., Wang, Y. J. Gen. Virol. (2001) [Pubmed]
  4. Widespread periodic intrinsic connections in the tree shrew visual cortex. Rockland, K.S., Lund, J.S. Science (1982) [Pubmed]
  5. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. Zhao, X., Tang, Z.Y., Klumpp, B., Wolff-Vorbeck, G., Barth, H., Levy, S., von Weizsäcker, F., Blum, H.E., Baumert, T.F. J. Clin. Invest. (2002) [Pubmed]
  6. Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Nishihara, H., Terai, Y., Okada, N. Mol. Biol. Evol. (2002) [Pubmed]
  7. Protein kinase and specific phosphate acceptor proteins associated with tupaia herpesvirus. Flügel, R.M., Darai, G. J. Virol. (1982) [Pubmed]
  8. Concatemeric forms of intracellular Tupaia herpesvirus DNA. Koch, H.G., Flügel, R.M., Darai, G. Virology (1986) [Pubmed]
  9. The involucrin gene of the tree shrew: recent repeat additions and the relocation of cysteine codons. Phillips, M., Rice, R.H., Djian, P., Green, H. Gene (1997) [Pubmed]
  10. Amino acid sequences of the aplpha and beta chains of adult hemoglobin of the tupai, Tupaia glis. Maita, T., Tanaka, E., Goodman, M., Matsuda, G. J. Biochem. (1977) [Pubmed]
  11. The actions of 5-hydroxytryptamine and histamine on the isolated ileum of the tree shrew (Tupaia glis). Sakai, K., Shiraki, Y., Tatsumi, T., Tsuji, K. Br. J. Pharmacol. (1979) [Pubmed]
  12. Demonstration in Tupaia papillary muscle preparations of alpha-adrenoceptors mediating positive inotropic effects: comparison with guinea-pigs. Koga, T., Shiraki, Y., Sakai, K. Br. J. Pharmacol. (1989) [Pubmed]
  13. Studies on the distribution of vasopressin-immunoreactive neuronal perikarya and their fibers in the hypothalamus of Tupaia belangeri. Luo, Y., Peng, N., Yang, W., Zhang, W. Brain Res. (1995) [Pubmed]
  14. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Siegwart, J.T., Norton, T.T. Vision Res. (1999) [Pubmed]
  15. Anterograde tracing of retinal afferents to the tree shrew hypothalamus and raphe. Reuss, S., Fuchs, E. Brain Res. (2000) [Pubmed]
  16. The corticosterone receptive system in the brain of Tupaia belangeri visualized by in vivo autoradiography. Flügge, G., Schniewind, A., Fuchs, E. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1988) [Pubmed]
  17. Volitional oral intake of nicotine in tupaias: drug-induced alterations. Opitz, K., Weischer, M.L. Drug and alcohol dependence. (1988) [Pubmed]
  18. Isolation and pharmacological characterization of two functional splice variants of corticotropin-releasing factor type 2 receptor from Tupaia belangeri. Palchaudhuri, M.R., Hauger, R.L., Wille, S., Fuchs, E., Dautzenberg , F.M. J. Neuroendocrinol. (1999) [Pubmed]
  19. Relationship of glucagon-somatostatin and gastrin-somatostatin cells in the stomach of the monkey. Helmstaedter, V., Feurle, G.E., Forssmann, W.G. Cell Tissue Res. (1977) [Pubmed]
  20. Ultrastructural identification of a new cell type--the N-cell as the source of neurotensin in the gut mucosa. Helmstaedter, V., Feurle, G.E., Forssmann, W.G. Cell Tissue Res. (1977) [Pubmed]
  21. Cloning and characterization of cholesteryl ester transfer transfer protein isolated from the tree shrew. Zeng, W., Zhang, J., Chen, B., Wu, G., Xue, H. Chin. Med. J. (2003) [Pubmed]
  22. Stereo architecture of the connective tissue cores of the lingual papillae in the treeshrew (Tupaia glis). Kobayashi, K., Wanichanon, C. Anat. Embryol. (1992) [Pubmed]
 
WikiGenes - Universities