The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Neurosecretory Systems

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neurosecretory Systems

  • Multiple endocrine neoplasia type 1 (MEN1) consists of benign, and sometimes malignant, tumors (often multiple in a tissue) of the parathyroids, enteropancreatic neuroendocrine system, anterior pituitary, and other tissues [1].
  • In contrast, the serum CT-pr level was frequently elevated in the absence of a detectable CT level in patients with various malignant tumors and, particularly, in those with either tumors of the neuroendocrine system (60%) or hepatocellular carcinomas (62%) [2].
  • Thus, we examined in lactating rats the response of the magnocellular neuroendocrine system to dehydration and the role of endogenous opioid peptides in regulating OT release during suckling under conditions of altered fluid balance in conscious and urethane-anesthetized rats [3].
  • The resultant hyperprolactinemia may be initiated by a reduction in the release of DA from the hyothalamus, perhaps reflecting a role for milk-derived PRL in the functional development of this neurosecretory system, and maintained in part by a reduction in pituitary responsiveness to DA [4].
  • Mechanisms governing the effect of polychlorinated biphenyl (PCB) toxicity on hypothalamic serotonergic function and the neuroendocrine system controlling LH secretion were investigated in Atlantic croaker (Micropogonias unulatus) exposed to the PCB mixture Aroclor 1254 (1 microg x g body weight(-1) x day(-1)) in the diet for 30 days [5].

Psychiatry related information on Neurosecretory Systems


High impact information on Neurosecretory Systems

  • Glucocorticoids are the main effector end point of this neuroendocrine system and, through the glucocorticoid receptor, have multiple effects on immune cells and molecules [7].
  • Studies in the early to mid 1980s demonstrated that monocyte-derived or recombinant interleukin-1 (IL-1) causes secretion of hormones of the hypothalamic-pituitary-adrenal (HPA) axis, establishing that immunoregulators, known as cytokines, play a pivotal role in this bidirectional communication between the immune and neuroendocrine systems [8].
  • We propose that regulation of the neuroendocrine system during starvation could be the main physiological role of leptin [9].
  • Glucagon-like immunoreactivity in insect corpus cardiacum [10].
  • In primates the LHRH neurosecretory system is already active during the neonatal period but subsequently enters a dormant state in the juvenile/prepubertal period [11].

Chemical compound and disease context of Neurosecretory Systems


Biological context of Neurosecretory Systems


Anatomical context of Neurosecretory Systems


Associations of Neurosecretory Systems with chemical compounds


Gene context of Neurosecretory Systems


Analytical, diagnostic and therapeutic context of Neurosecretory Systems


  1. Multiple endocrine neoplasia type 1: clinical and genetic topics. Marx, S., Spiegel, A.M., Skarulis, M.C., Doppman, J.L., Collins, F.S., Liotta, L.A. Ann. Intern. Med. (1998) [Pubmed]
  2. Identification and measurement of calcitonin precursors in serum of patients with malignant diseases. Ghillani, P.P., Motté, P., Troalen, F., Jullienne, A., Gardet, P., Le Chevalier, T., Rougier, P., Schlumberger, M., Bohuon, C., Bellet, D. Cancer Res. (1989) [Pubmed]
  3. Endogenous opioid peptides inhibit oxytocin release in the lactating rat after dehydration and urethane. Hartman, R.D., Rosella-Dampman, L.M., Summy-Long, J.Y. Endocrinology (1987) [Pubmed]
  4. Hyperprolactinemia after neonatal prolactin (PRL) deficiency in rats: evidence for altered anterior pituitary regulation of PRL secretion. Shah, G.V., Shyr, S.W., Grosvenor, C.E., Crowley, W.R. Endocrinology (1988) [Pubmed]
  5. Disruption of neuroendocrine control of luteinizing hormone secretion by aroclor 1254 involves inhibition of hypothalamic tryptophan hydroxylase activity. Khan, I.A., Thomas, P. Biol. Reprod. (2001) [Pubmed]
  6. Aberrant stress response associated with severe hypoglycemia in a transgenic mouse model of Alzheimer's disease. Pedersen, W.A., Culmsee, C., Ziegler, D., Herman, J.P., Mattson, M.P. J. Mol. Neurosci. (1999) [Pubmed]
  7. Neuroendocrine regulation of immunity. Webster, J.I., Tonelli, L., Sternberg, E.M. Annu. Rev. Immunol. (2002) [Pubmed]
  8. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Turnbull, A.V., Rivier, C.L. Physiol. Rev. (1999) [Pubmed]
  9. Role of leptin in the neuroendocrine response to fasting. Ahima, R.S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., Flier, J.S. Nature (1996) [Pubmed]
  10. Glucagon-like immunoreactivity in insect corpus cardiacum. Tager, H.S., Markese, J., Spiers, R.D., Kramer, K.J. Nature (1975) [Pubmed]
  11. Neurobiological mechanisms of the onset of puberty in primates. Terasawa, E., Fernandez, D.L. Endocr. Rev. (2001) [Pubmed]
  12. Cytological evidence for serotonin-containing fibers in an abdominal neurohemal organ in a hemipteran. Flanagan, T.R. Brain Res. (1984) [Pubmed]
  13. Depression of delayed-type hypersensitivity in mice with hypothalamic lesion induced by monosodium glutamate: involvement of neuroendocrine system in immunomodulation. Kato, K., Hamada, N., Mizukoshi, N., Yamamoto, K., Kimura, T., Ishihara, C., Fujioka, Y., Kato, T., Fujieda, K., Matsuura, N. Immunology (1986) [Pubmed]
  14. Effect of lithium chloride on the neurosecretory system of the rat hypothalamus. Yavorskii, A.N., Samoilov, N.N., Rychko, A.V. Neurosci. Behav. Physiol. (1979) [Pubmed]
  15. Histological and histochemical study of the caudal neurosecretory system of the freshwater teleost Ompok bimaculatus (Bloch) with a note on its response to hypophysectomy and osmotic stress. Haider, S., Pandey, A.C. Journal für Hirnforschung. (1981) [Pubmed]
  16. Neuron-specific enolase is produced by neuroendocrine tumours. Tapia, F.J., Polak, J.M., Barbosa, A.J., Bloom, S.R., Marangos, P.J., Dermody, C., Pearse, A.G. Lancet (1981) [Pubmed]
  17. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. van den Pol, A.N. J. Neurosci. (1999) [Pubmed]
  18. A comparison of two immediate-early genes, c-fos and NGFI-B, as markers for functional activation in stress-related neuroendocrine circuitry. Chan, R.K., Brown, E.R., Ericsson, A., Kovács, K.J., Sawchenko, P.E. J. Neurosci. (1993) [Pubmed]
  19. Cloning and sequence analysis of cDNAs encoding precursors of urotensin II-alpha and -gamma. Ohsako, S., Ishida, I., Ichikawa, T., Deguchi, T. J. Neurosci. (1986) [Pubmed]
  20. Regulation of lymphokine (gamma-interferon) production by corticotropin. Johnson, H.M., Torres, B.A., Smith, E.M., Dion, L.D., Blalock, J.E. J. Immunol. (1984) [Pubmed]
  21. A functional cyclic AMP response element plays a crucial role in neuroendocrine cell type-specific expression of the secretory granule protein chromogranin A. Wu, H., Mahata, S.K., Mahata, M., Webster, N.J., Parmer, R.J., O'Connor, D.T. J. Clin. Invest. (1995) [Pubmed]
  22. Enkephalin-containing peptides processed from proenkephalin significantly enhance the antibody-forming cell responses to antigens. Hiddinga, H.J., Isaak, D.D., Lewis, R.V. J. Immunol. (1994) [Pubmed]
  23. PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. Hibi, K., Westra, W.H., Borges, M., Goodman, S., Sidransky, D., Jen, J. Am. J. Pathol. (1999) [Pubmed]
  24. Activation of CD8 T cells by antigen expressed in the pituitary gland. de Jersey, J., Carmignac, D., Barthlott, T., Robinson, I., Stockinger, B. J. Immunol. (2002) [Pubmed]
  25. LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Bates, S.H., Dundon, T.A., Seifert, M., Carlson, M., Maratos-Flier, E., Myers, M.G. Diabetes (2004) [Pubmed]
  26. The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Kuiper, G.G., Shughrue, P.J., Merchenthaler, I., Gustafsson, J.A. Frontiers in neuroendocrinology. (1998) [Pubmed]
  27. Thiethylperazine; clinical antipsychotic efficacy and correlation with potency in predictive systems. Rotrosen, J., Angrist, B.M., Gershon, S., Aronson, M., Gruen, P., Sachar, E.J., Denning, R.K., Matthysse, S., Stanley, M., Wilk, S. Arch. Gen. Psychiatry (1978) [Pubmed]
  28. Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Francis, G.S., Cohn, J.N., Johnson, G., Rector, T.S., Goldman, S., Simon, A. Circulation (1993) [Pubmed]
  29. gamma-Aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Mitsushima, D., Hei, D.L., Terasawa, E. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  30. Central peptidergic neurons are hyperactive during collateral sprouting and inhibition of activity suppresses sprouting. Watt, J.A., Moffet, C.W., Zhou, X., Short, S., Herman, J.P., Paden, C.M. J. Neurosci. (1999) [Pubmed]
  31. Gonadotropin-releasing hormone and NMDA receptor gene expression and colocalization change during puberty in female rats. Gore, A.C., Wu, T.J., Rosenberg, J.J., Roberts, J.L. J. Neurosci. (1996) [Pubmed]
  32. Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Sloop, K.W., Meier, B.C., Bridwell, J.L., Parker, G.E., Schiller, A.M., Rhodes, S.J. Mol. Endocrinol. (1999) [Pubmed]
  33. Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. De Velasco, B., Shen, J., Go, S., Hartenstein, V. Dev. Biol. (2004) [Pubmed]
  34. Involvement of interleukin-1 and interleukin-1 receptor antagonist in rat pituitary cell growth regulation. Renner, U., Newton, C.J., Pagotto, U., Sauer, J., Arzt, E., Stalla, G.K. Endocrinology (1995) [Pubmed]
  35. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Agelaki, S., Tsatsanis, C., Gravanis, A., Margioris, A.N. Infect. Immun. (2002) [Pubmed]
  36. Disturbed immune-endocrine communication in autoimmune disease. Lack of corticosterone response to immune signals in obese strain chickens with spontaneous autoimmune thyroiditis. Schauenstein, K., Fässler, R., Dietrich, H., Schwarz, S., Krömer, G., Wick, G. J. Immunol. (1987) [Pubmed]
  37. Urotensin I, a CRF-like neuropeptide, stimulates acth release from the teleost pituitary. Fryer, J., Lederis, K., Rivier, J. Endocrinology (1983) [Pubmed]
  38. Long-term effects of pinealectomy on testicular function, luteinizing hormone-releasing hormone hypothalamic system, and plasma prolactin levels in the mink, a short-day breeder. Boissin-Agasse, L., Jacquet, J.M., Lacroix, A., Boissin, J. J. Pineal Res. (1988) [Pubmed]
  39. Organization of the hypothalamic-pituitary system: current concepts from immunohistochemical studies. Zimmerman, E.A., Antunes, J.L. J. Histochem. Cytochem. (1976) [Pubmed]
  40. The topography of mesotocin and vasotocin systems in the brain of the domestic mallard and Japanese quail: immunocytochemical identification. Bons, N. Cell Tissue Res. (1980) [Pubmed]
WikiGenes - Universities