The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Eif1  -  eukaryotic translation initiation factor 1

Mus musculus

Synonyms: Eukaryotic translation initiation factor 1, Protein translation factor SUI1 homolog, Sui1, Sui1-rs1, eIF1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Eif1

  • The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase [1].
  • Here, we show that during Semliki Forest virus (SFV) infection, the translation inhibition is largely due to the activation of the cellular stress response via phosphorylation of eukaryotic translation initiation factor 2alpha subunit (eIF2alpha) [2].

High impact information on Eif1


Biological context of Eif1


Anatomical context of Eif1


Associations of Eif1 with chemical compounds


Regulatory relationships of Eif1


Other interactions of Eif1


Analytical, diagnostic and therapeutic context of Eif1


  1. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. He, B., Gross, M., Roizman, B. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation. McInerney, G.M., Kedersha, N.L., Kaufman, R.J., Anderson, P., Liljeström, P. Mol. Biol. Cell (2005) [Pubmed]
  3. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., Saunders, T., Bonner-Weir, S., Kaufman, R.J. Mol. Cell (2001) [Pubmed]
  4. Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK. Marciniak, S.J., Garcia-Bonilla, L., Hu, J., Harding, H.P., Ron, D. J. Cell Biol. (2006) [Pubmed]
  5. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. Lin, W., Harding, H.P., Ron, D., Popko, B. J. Cell Biol. (2005) [Pubmed]
  6. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. Novoa, I., Zeng, H., Harding, H.P., Ron, D. J. Cell Biol. (2001) [Pubmed]
  7. Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways. Wong, A.H., Tam, N.W., Yang, Y.L., Cuddihy, A.R., Li, S., Kirchhoff, S., Hauser, H., Decker, T., Koromilas, A.E. EMBO J. (1997) [Pubmed]
  8. Nuclear mRNA degradation pathway(s) are implicated in Xist regulation and X chromosome inactivation. Ciaudo, C., Bourdet, A., Cohen-Tannoudji, M., Dietz, H.C., Rougeulle, C., Avner, P. PLoS Genet. (2006) [Pubmed]
  9. Multiple translation initiation factor Sui1 related sequences in mammalian genomes. Purohit, R., McCormick, D., Dyson, J. Mamm. Genome (1996) [Pubmed]
  10. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Harding, H.P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H., Sabatini, D.D., Ron, D. Mol. Cell (2001) [Pubmed]
  11. Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. Jousse, C., Oyadomari, S., Novoa, I., Lu, P., Zhang, Y., Harding, H.P., Ron, D. J. Cell Biol. (2003) [Pubmed]
  12. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Svitkin, Y.V., Herdy, B., Costa-Mattioli, M., Gingras, A.C., Raught, B., Sonenberg, N. Mol. Cell. Biol. (2005) [Pubmed]
  13. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. McEwen, E., Kedersha, N., Song, B., Scheuner, D., Gilks, N., Han, A., Chen, J.J., Anderson, P., Kaufman, R.J. J. Biol. Chem. (2005) [Pubmed]
  14. The subcellular distribution of eukaryotic translation initiation factor, eIF-5A, in cultured cells. Shi, X.P., Yin, K.C., Zimolo, Z.A., Stern, A.M., Waxman, L. Exp. Cell Res. (1996) [Pubmed]
  15. Spermatogonia-dependent expression of testicular genes in mice. Tanaka, K., Tamura, H., Tanaka, H., Katoh, M., Futamata, Y., Seki, N., Nishimune, Y., Hara, T. Dev. Biol. (2002) [Pubmed]
  16. Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Tsutsumi, S., Namba, T., Tanaka, K.I., Arai, Y., Ishihara, T., Aburaya, M., Mima, S., Hoshino, T., Mizushima, T. Oncogene (2006) [Pubmed]
  17. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) is a substrate for the nucleotide hydrolysis and RNA unwinding activities of eukaryotic translation initiation factor eIF4A. Peck, M.L., Herschlag, D. RNA (2003) [Pubmed]
  18. cDNA and derived amino acid sequence of the hypusine containing protein from Dictyostelium discoideum. Sandholzer, U., Centea-Intemann, M., Noegel, A.A., Lottspeich, F. FEBS Lett. (1989) [Pubmed]
  19. Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Jansen, A.P., Camalier, C.E., Colburn, N.H. Cancer Res. (2005) [Pubmed]
  20. Activation of NF-kappaB in cells productively infected with HSV-1 depends on activated protein kinase R and plays no apparent role in blocking apoptosis. Taddeo, B., Luo, T.R., Zhang, W., Roizman, B. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  21. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Yang, H.S., Jansen, A.P., Komar, A.A., Zheng, X., Merrick, W.C., Costes, S., Lockett, S.J., Sonenberg, N., Colburn, N.H. Mol. Cell. Biol. (2003) [Pubmed]
  22. Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. Niedzwiecka, A., Marcotrigiano, J., Stepinski, J., Jankowska-Anyszka, M., Wyslouch-Cieszynska, A., Dadlez, M., Gingras, A.C., Mak, P., Darzynkiewicz, E., Sonenberg, N., Burley, S.K., Stolarski, R. J. Mol. Biol. (2002) [Pubmed]
WikiGenes - Universities