The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Blood-Retinal Barrier

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Blood-Retinal Barrier


High impact information on Blood-Retinal Barrier


Chemical compound and disease context of Blood-Retinal Barrier


Biological context of Blood-Retinal Barrier


Anatomical context of Blood-Retinal Barrier


Associations of Blood-Retinal Barrier with chemical compounds


Gene context of Blood-Retinal Barrier

  • We have therefore examined the production of RANTES by cultured human retinal pigment epithelial cells (RPE), which form a part of the blood-retinal barrier, in response to cytokines likely to be present in the microenvironment [30].
  • CONCLUSION: IL-6 derived from blood during the breakdown of the blood-retinal barrier (BRB) and produced by RPE cells and hematogenous sIL-6R cause RPE proliferation [31].
  • Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood-retinal barrier [32].
  • It is likely that the retina contains a mechanism for the degradation of hemopexin-bound heme since the blood-retinal barrier also precludes the exit of heme-hemopexin from the retina [33].
  • These results suggest that AR is involved in the functional regulation of OAT3 at the BBB, but not at the inner blood-retinal barrier (iBRB), and this regulation is not affected by gender [34].

Analytical, diagnostic and therapeutic context of Blood-Retinal Barrier


  1. Effect of sorbinil on blood-retinal barrier in early diabetic retinopathy. Cunha-Vaz, J.G., Mota, C.C., Leite, E.C., Abreu, J.R., Ruas, M.A. Diabetes (1986) [Pubmed]
  2. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Murata, T., Nagai, R., Ishibashi, T., Inomuta, H., Ikeda, K., Horiuchi, S. Diabetologia (1997) [Pubmed]
  3. Effect of antihypertensive treatment on blood-retinal barrier permeability to fluorescein in hypertensive type 1 (insulin-dependent) diabetic patients with background retinopathy. Parving, H.H., Larsen, M., Hommel, E., Lund-Andersen, H. Diabetologia (1989) [Pubmed]
  4. Assessment of the permeability of the blood-retinal barrier in hypertensive rats. Lightman, S., Rechthand, E., Latker, C., Palestine, A., Rapoport, S. Hypertension (1987) [Pubmed]
  5. The role of advanced glycation end products in retinal microvascular leukostasis. Moore, T.C., Moore, J.E., Kaji, Y., Frizzell, N., Usui, T., Poulaki, V., Campbell, I.L., Stitt, A.W., Gardiner, T.A., Archer, D.B., Adamis, A.P. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  6. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. Poulaki, V., Qin, W., Joussen, A.M., Hurlbut, P., Wiegand, S.J., Rudge, J., Yancopoulos, G.D., Adamis, A.P. J. Clin. Invest. (2002) [Pubmed]
  7. The blood-retinal barrier: leucine transport by the retinal pigment epithelium. Sellner, P.A. J. Neurosci. (1986) [Pubmed]
  8. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Cheung, A.K., Fung, M.K., Lo, A.C., Lam, T.T., So, K.F., Chung, S.S., Chung, S.K. Diabetes (2005) [Pubmed]
  9. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium. Harkness, K.A., Adamson, P., Sussman, J.D., Davies-Jones, G.A., Greenwood, J., Woodroofe, M.N. Brain (2000) [Pubmed]
  10. Breakdown of blood. Retinal barrier in RCS rats with inherited retinal degeneration. Essner, E., Pino, R.M., Griewski, R.A. Lab. Invest. (1980) [Pubmed]
  11. The fast oscillation of the electrooculogram reveals sensitivity of the human outer retina/retinal pigment epithelium to glucose level. Schneck, M.E., Fortune, B., Adams, A.J. Vision Res. (2000) [Pubmed]
  12. Acidosis alters fluorescein permeability. Differential tracer penetration through pigment epithelium. Shinowara, N.L., Grimes, P.A., Rapoport, S.I., Laties, A.M. Arch. Ophthalmol. (1983) [Pubmed]
  13. Reduction of retinal albumin leakage by the antioxidant calcium dobesilate in streptozotocin-diabetic rats. Rota, R., Chiavaroli, C., Garay, R.P., Hannaert, P. Eur. J. Pharmacol. (2004) [Pubmed]
  14. Role of the intraocular irrigating solutions in the pathogenesis of the postvitrectomy retinal edema. Saornil Alvarez, M.A., Pastor Jimeno, J.C. Curr. Eye Res. (1987) [Pubmed]
  15. Kinetics of glucose transport across the blood-retinal barrier. Alm, A. Invest. Ophthalmol. Vis. Sci. (1984) [Pubmed]
  16. Quantitative vitreous fluorophotometry applying a mathematical model of the eye. Lund-Andersen, H., Krogsaa, B., la Cour, M., Larsen, J. Invest. Ophthalmol. Vis. Sci. (1985) [Pubmed]
  17. Plasma-induced changes in the physiology of mammalian retinal glial cells: role of glutamate. Kusaka, S., Kapousta-Bruneau, N.V., Puro, D.G. Glia (1999) [Pubmed]
  18. Quantification of diabetic macular edema. Smith, R.T., Lee, C.M., Charles, H.C., Farber, M., Cunha-Vaz, J.G. Arch. Ophthalmol. (1987) [Pubmed]
  19. VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Vascular endothelial growth factor-A. Hofman, P., Blaauwgeers, H.G., Tolentino, M.J., Adamis, A.P., Nunes Cardozo, B.J., Vrensen, G.F., Schlingemann, R.O. Curr. Eye Res. (2000) [Pubmed]
  20. Inner blood-retinal barrier GLUT1 in long-term diabetic rats: an immunogold electron microscopic study. Fernandes, R., Suzuki, K., Kumagai, A.K. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  21. Indomethacin and the epinephrine-induced breakdown of the blood-ocular barrier in rabbits. Miyake, K., Kayazawa, F., Manabe, R., Miyake, Y. Invest. Ophthalmol. Vis. Sci. (1987) [Pubmed]
  22. Electroretinogram changes after fluorescein injection: a new method to evaluate blood-retinal barrier dysfunction. Tamai, M., Mizuno, K. Invest. Ophthalmol. Vis. Sci. (1981) [Pubmed]
  23. Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., Hirano, H. Invest. Ophthalmol. Vis. Sci. (1992) [Pubmed]
  24. TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Behzadian, M.A., Wang, X.L., Windsor, L.J., Ghaly, N., Caldwell, R.B. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  25. Characterization of the early stages of diabetic retinopathy by vitreous fluorophotometry. Cunha-Vaz, J.G., Gray, J.R., Zeimer, R.C., Mota, M.C., Ishimoto, B.M., Leite, E. Diabetes (1985) [Pubmed]
  26. Permeability changes in blood-retinal barrier of galactosemic rats are prevented by aldose reductase inhibitors. Lightman, S., Rechthand, E., Terubayashi, H., Palestine, A., Rapoport, S., Kador, P. Diabetes (1987) [Pubmed]
  27. Altered retinal metabolism in diabetes. I. Microanalysis of lipid, glucose, sorbitol, and myo-inositol in the choroid and in the individual layers of the rabbit retina. MacGregor, L.C., Rosecan, L.R., Laties, A.M., Matschinsky, F.M. J. Biol. Chem. (1986) [Pubmed]
  28. Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Xu, Q., Qaum, T., Adamis, A.P. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  29. Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Amrite, A.C., Ayalasomayajula, S.P., Cheruvu, N.P., Kompella, U.B. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  30. Cytokine regulation of RANTES production by human retinal pigment epithelial cells. Crane, I.J., Kuppner, M.C., McKillop-Smith, S., Knott, R.M., Forrester, J.V. Cell. Immunol. (1998) [Pubmed]
  31. Increased soluble interleukin-6 receptor in vitreous fluid of proliferative vitreoretinopathy. Yamamoto, H., Hayashi, H., Uchida, H., Kato, H., Oshima, K. Curr. Eye Res. (2003) [Pubmed]
  32. Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood-retinal barrier. Gehlbach, P., Demetriades, A.M., Yamamoto, S., Deering, T., Xiao, W.H., Duh, E.J., Yang, H.S., Lai, H., Kovesdi, I., Carrion, M., Wei, L., Campochiaro, P.A. Hum. Gene Ther. (2003) [Pubmed]
  33. Hemopexin in the human retina: protection of the retina against heme-mediated toxicity. Hunt, R.C., Hunt, D.M., Gaur, N., Smith, A. J. Cell. Physiol. (1996) [Pubmed]
  34. Dominant expression of androgen receptors and their functional regulation of organic anion transporter 3 in rat brain capillary endothelial cells; comparison of gene expression between the blood-brain and -retinal barriers. Ohtsuki, S., Tomi, M., Hata, T., Nagai, Y., Hori, S., Mori, S., Hosoya, K., Terasaki, T. J. Cell. Physiol. (2005) [Pubmed]
  35. Glial reactivity, an early feature of diabetic retinopathy. Rungger-Brändle, E., Dosso, A.A., Leuenberger, P.M. Invest. Ophthalmol. Vis. Sci. (2000) [Pubmed]
  36. Pathophysiology of the blood-retinal barrier in experimental diabetes. Vitreous fluorophotometry using carboxyfluorescein and fluorescein. Blair, N.P., Jones, C.W., Rusin, M.M. Arch. Ophthalmol. (1984) [Pubmed]
  37. Fluorescein angiographic evaluation of the effect of latanoprost treatment on blood-retinal barrier integrity: a review of studies conducted on pseudophakic glaucoma patients and on phakic and aphakic monkeys. Hoyng, P.F., Rulo, A.H., Greve, E.L., Astin, M., Gjötterberg, M. Survey of ophthalmology. (1997) [Pubmed]
  38. Effect of argon laser photocoagulation on fluorescein transport across the blood-retinal barrier. Zweig, K., Cunha-Vaz, J., Peyman, G., Stein, M., Raichand, M. Exp. Eye Res. (1981) [Pubmed]
WikiGenes - Universities