The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

H  -  haemagglutinin

Peste-des-petits-ruminants virus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of H


High impact information on H

  • We report here that a monoclonal antibody directed against the virus haemagglutinin, unlike an antibody to the virus nucleocapsid protein, is able to induce a subacute encephalitis in vivo [1].
  • It was investigated whether this effect was restricted to only one viral glycoprotein, either the haemagglutinin (H) or the fusion (F) protein, which form a fusion complex on the surface of virions and infected cells, or whether it is dependent on both in transient co-transfection assays [5].
  • Characterization of this recombinant virus revealed that the N481Y substitution in the haemagglutinin allowed it to utilize CD46 as an alternative receptor, but that its ability to use CD46 was rather low in CD46+ SLAM- cell lines compared with that of the recombinant virus possessing the haemagglutinin of the Edmonston laboratory strain [6].
  • The recombinant MV, based on a SLAM-using clinical isolate in which asparagine at position 481 of the haemagglutinin was replaced with tyrosine, was generated [6].
  • The cell surface expression of MV fusion (F), but not haemagglutinin, envelope protein resulted in complement activation of the Factor B-dependent alternative pathway in a dose-dependent manner and F-C3b complexes were formed [7].

Chemical compound and disease context of H


Biological context of H


Anatomical context of H


Associations of H with chemical compounds

  • A specific response was detected to all RPV proteins tested, namely the haemagglutinin (H), fusion (F), nucleocapsid (N) and matrix (M) proteins, in animals vaccinated with the attenuated strain of the virus [22].
  • Cross-linking studies with a variety of chemicals stabilized dimeric forms of the haemagglutinin (HA) or fusion (F) proteins, although by sucrose density gradient analysis, oligomers corresponding to tetramers and larger were observed for both proteins [23].
  • Treatment of BGM/MV cells with actinomycin D effected an increase in the percentage of cells expressing cell surface virus haemagglutinin (HA) at times when the percentage of cells with surface HA was less than the percentage of cells with intracellular measles antigens [24].
  • We note that the haemagglutinin (H) sequence of D7 viruses shows distinct exchanges of certain amino acids in the stem and propeller domain compared to C2, D6 and the MV vaccine strains used [25].
  • We observed no antigenic variation in the haemagglutinin, the fusion glycoprotein, or in the matrix protein [26].

Other interactions of H


Analytical, diagnostic and therapeutic context of H

  • Vaccine aerosol given either by mask in a dose of 3500 or 7000 plaque-forming units (PFU) or from a plastic bag at a dose of 7000 PFU raised haemagglutinin-inhibiting or plaque-inhibiting measles antibody 16-24 weeks after vaccination to a titre of 1 in 8 or greater in all but 3 of the 51 children so vaccinated [29].
  • A total of 35 wild-type measles viruses identified in Victoria, Australia, between 1973 and 1998 were characterized by nucleic acid sequence analysis of the nucleoprotein gene and, in some cases, the haemagglutinin gene [30].
  • A membrane immunofluorescence test revealed that the decreased binding activity to AGM-RBC of T8Ve-3, T11Ve-3 and N13Ve-3 was not due to decreased expression of the haemagglutinin (H) protein on the cell surface [31].
  • Previously, we have shown that cotton rats are a good animal model to study MV-induced immune suppression, where proliferation inhibition after ex vivo stimulation of cotton rat spleen cells is induced by the viral glycoproteins (fusion and haemagglutinin proteins) [32].
  • The antigenic determinants of the haemagglutinin and haemolysin antigens of measles virus were located at the surface of HEp2 cells infected with measles virus and on measles virions released from these cells, using immunoelectron microscopy [33].


  1. Induction of subacute murine measles encephalitis by monoclonal antibody to virus haemagglutinin. Rammohan, K.W., McFarland, H.F., McFarlin, D.E. Nature (1981) [Pubmed]
  2. Haemagglutinin of measles virus: purification and storage with preservation of biological and immunological properties. Gerlier, D., Garnier, F., Forquet, F. J. Gen. Virol. (1988) [Pubmed]
  3. Antigenic and functional characterization of rinderpest virus envelope proteins using monoclonal antibodies. Sugiyama, M., Minamoto, N., Kinjo, T., Hirayama, N., Asano, K., Tsukiyama-Kohara, K., Yoshikawa, Y., Yamanouchi, K. J. Gen. Virol. (1991) [Pubmed]
  4. Characterization of a secreted form of measles virus haemagglutinin expressed from a vaccinia virus recombinant. Malvoisin, E., Wild, F. J. Gen. Virol. (1994) [Pubmed]
  5. CD9-dependent regulation of Canine distemper virus-induced cell-cell fusion segregates with the extracellular domain of the haemagglutinin. Singethan, K., Topfstedt, E., Schubert, S., Duprex, W.P., Rima, B.K., Schneider-Schaulies, J. J. Gen. Virol. (2006) [Pubmed]
  6. Recombinant wild-type measles virus containing a single N481Y substitution in its haemagglutinin cannot use receptor CD46 as efficiently as that having the haemagglutinin of the Edmonston laboratory strain. Seki, F., Takeda, M., Minagawa, H., Yanagi, Y. J. Gen. Virol. (2006) [Pubmed]
  7. Cell surface activation of the alternative complement pathway by the fusion protein of measles virus. Devaux, P., Christiansen, D., Plumet, S., Gerlier, D. J. Gen. Virol. (2004) [Pubmed]
  8. Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. Woelk, C.H., Jin, L., Holmes, E.C., Brown, D.W. J. Gen. Virol. (2001) [Pubmed]
  9. Purification, morphology and antigenic characterization of measles virus envelope components. Varsanyi, T.M., Utter, G., Norrby, E. J. Gen. Virol. (1984) [Pubmed]
  10. Role of individual cysteine residues in the processing and antigenicity of the measles virus haemagglutinin protein. Hu, A., Norrby, E. J. Gen. Virol. (1994) [Pubmed]
  11. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents. Fooks, A.R., Jeevarajah, D., Lee, J., Warnes, A., Niewiesk, S., ter Meulen, V., Stephenson, J.R., Clegg, J.C. J. Gen. Virol. (1998) [Pubmed]
  12. Measles virus haemagglutinin gene: cloning, complete nucleotide sequence analysis and expression in COS cells. Gerald, C., Buckland, R., Barker, R., Freeman, G., Wild, T.F. J. Gen. Virol. (1986) [Pubmed]
  13. DNA vaccination with both the haemagglutinin and fusion proteins but not the nucleocapsid protein protects against experimental measles virus infection. Schlereth, B., Germann, P.G., ter Meulen, V., Niewiesk, S. J. Gen. Virol. (2000) [Pubmed]
  14. Construction of vaccinia virus recombinants expressing several measles virus proteins and analysis of their efficacy in vaccination of mice. Wild, T.F., Bernard, A., Spehner, D., Drillien, R. J. Gen. Virol. (1992) [Pubmed]
  15. Antigenicity of the measles virus haemagglutinin studied by using synthetic peptides. Mäkelä, M.J., Lund, G.A., Salmi, A.A. J. Gen. Virol. (1989) [Pubmed]
  16. Dendritic cells and measles virus infection. Schneider-Schaulies, S., Klagge, I.M., ter Meulen, V. Curr. Top. Microbiol. Immunol. (2003) [Pubmed]
  17. The ectodomain of measles virus envelope glycoprotein does not gain access to the cytosol and MHC class I presentation pathway following virus-cell fusion. Cardoso, A.I., Gerlier, D., Wild, T.F., Rabourdin-Combe, C. J. Gen. Virol. (1996) [Pubmed]
  18. Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fusion proteins protect against measles encephalitis. Fournier, P., Brons, N.H., Berbers, G.A., Wiesmüller, K.H., Fleckenstein, B.T., Schneider, F., Jung, G., Muller, C.P. J. Gen. Virol. (1997) [Pubmed]
  19. Recombinant measles virus requiring an exogenous protease for activation of infectivity. Maisner, A., Mrkic, B., Herrler, G., Moll, M., Billeter, M.A., Cattaneo, R., Klenk, H.D. J. Gen. Virol. (2000) [Pubmed]
  20. Immune responses in mice following immunization with chimeric synthetic peptides representing B and T cell epitopes of measles virus proteins. Partidos, C.D., Stanley, C.M., Steward, M.W. J. Gen. Virol. (1991) [Pubmed]
  21. Identification of helper T cell antigenic sites in mice from the haemagglutinin glycoprotein of measles virus. Obeid, O.E., Partidos, C.D., Steward, M.W. J. Gen. Virol. (1993) [Pubmed]
  22. Vaccination of cattle with attenuated rinderpest virus stimulates CD4(+) T cell responses with broad viral antigen specificity. Lund, B.T., Tiwari, A., Galbraith, S., Baron, M.D., Morrison, W.I., Barrett, T. J. Gen. Virol. (2000) [Pubmed]
  23. Measles virus glycoproteins: studies on the structure and interaction of the haemagglutinin and fusion proteins. Malvoisin, E., Wild, T.F. J. Gen. Virol. (1993) [Pubmed]
  24. Changes in the virus-host cell relationship in a stable non-virogenic cell line persistently infected with measles virus (BGM/MV). May, J.D., Menna, J.H. J. Gen. Virol. (1979) [Pubmed]
  25. Rapid replacement of endemic measles virus genotypes. Santibanez, S., Tischer, A., Heider, A., Siedler, A., Hengel, H. J. Gen. Virol. (2002) [Pubmed]
  26. Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein. Giraudon, P., Jacquier, M.F., Wild, T.F. Virus Res. (1988) [Pubmed]
  27. Sequence Analysis of the Haemagglutinin and Fusion Protein Genes of Peste-des-petits Ruminants Vaccine Virus of Indian Origin. Dhar, P., Muthuchelvan, D., Sanyal, A., Kaul, R., Singh, R.P., Singh, R.K., Bandyopadhyay, S.K. Virus Genes (2006) [Pubmed]
  28. Production and characterization of monoclonal antibodies to peste des petits ruminants (PPR) virus. Singh, R.P., Bandyopadhyay, S.K., Sreenivasa, B.P., Dhar, P. Vet. Res. Commun. (2004) [Pubmed]
  29. Immunisation of 4-6 month old Gambian infants with Edmonston-Zagreb measles vaccine. Whittle, H.C., Rowland, M.G., Mann, G.F., Lamb, W.H., Lewis, R.A. Lancet (1984) [Pubmed]
  30. Molecular characterization of measles viruses isolated in Victoria, Australia, between 1973 and 1998. Chibo, D., Birch, C.J., Rota, P.A., Catton, M.G. J. Gen. Virol. (2000) [Pubmed]
  31. Increased binding activity of measles virus to monkey red blood cells after long-term passage in Vero cell cultures. Shibahara, K., Hotta, H., Katayama, Y., Homma, M. J. Gen. Virol. (1994) [Pubmed]
  32. Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes. Niewiesk, S., Ohnimus, H., Schnorr, J.J., Götzelmann, M., Schneider-Schaulies, S., Jassoy, C., ter Meulen, V. J. Gen. Virol. (1999) [Pubmed]
  33. Immunoelectron microscopic studies on haemagglutinin and haemolysin of measles virus in infected HEp2 cells. Armstrong, M.A., Fraser, K.B., Dermott, E., Shirodaria, P.V. J. Gen. Virol. (1982) [Pubmed]
WikiGenes - Universities