The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

flaA  -  flagellin

Campylobacter jejuni RM1221

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of flaA

 

High impact information on flaA

  • Mutants in which flaB but not flaA is inactivated remain motile [6].
  • We have developed a focused metabolomics approach to define the function of flagellin glycosylation genes in Campylobacter jejuni 81-176 [7].
  • A key difference in the C. jejuni flagellar transcriptional cascade compared with other bacteria that use sigma 28 for transcription of flagellar genes is that a mechanism to repress significantly sigma 28-dependent transcription of flaA in flagellar assembly mutants is absent in C. jejuni [8].
  • One mutant, K2-32, which is non-adherent and non-invasive, has an insertion of the kanamycin-resistance cassette into the flaA flagellin gene and has greatly reduced motility and a truncated flagellar filament typical of flaA mutants [9].
  • The results of the RAPD analysis were consistent with the flaA RFLP data [2].
 

Chemical compound and disease context of flaA

 

Biological context of flaA

  • There was no statistically significant association of PFGE type with flaA genotype, serotype, or antimicrobial susceptibility pattern [11].
  • Enlarged flaA genes, contributing three further polymorphisms, were detected in strains isolated from fresh water [12].
  • The nucleotide sequence of the flaA short variable region (SVR) was determined for each isolate [13].
  • Campylobacter jejuni recovered from patients with Guillain-Barré syndrome (GBS) in different geographical locations and bearing different heat-labile and heat-stable antigens were found to have identical amino acid sequences in their flagellar flaA short variable region, suggesting that it may be a potentially useful marker for GBS association [14].
  • The entire flaA gene was sequenced from strains differing by a single base pair in the 582-bp region, and the data revealed that additional discrimination may in some cases be obtained by sequencing outside the SVR [15].
 

Anatomical context of flaA

 

Associations of flaA with chemical compounds

 

Other interactions of flaA

  • Using C. jejuni DNA probes, clones representing C. upsaliensis flaA, fur and ftsZ genes were isolated and localized to the physical map [23].
  • One hundred seventeen (100%) isolates were positive for flaA, cadF, and ceuE gene primers [24].
  • A null mutation of luxS in C. jejuni strain 81116 reduced flaA transcription (approximately 43% that of the wild-type) and induced a reduction in motility [25].
  • CONCLUSIONS: High prevalence of the cadF, ceuE, flaA and cdtB genes was found [26].
 

Analytical, diagnostic and therapeutic context of flaA

  • CONCLUSIONS: Evaluating our results we observed (i) that there was no clonality of a certain flaA type among the strains and the serotypes examined and (ii) that the discriminatory ability of flaA typing was much better than that of serotyping [27].
  • The 5' flagellin gene, flaA, was generated by PCR and both strands sequenced [28].
  • Bidirectional genetic exchange of DNA between homologous and heterologous strains was confirmed by Southern blotting in combination with flaA polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), amplified fragment length polymorphism (AFLP) and pulsed field gel electrophoresis (PFGE) [29].
  • A real-time PCR assay was developed and tested on 181 C. jejuni and Campylobacter coli isolates, a subset of which have previously been characterized by multilocus sequence typing, flaA short variable region sequencing, and pulsed-field gel electrophoresis [30].
  • AFLP fingerprinting was the most discriminatory technique, identifying 41 distinct genotypes, while PFGE identified 38 different types, flaA typing discriminated 31 different types, and ribotyping discriminated 26 different types [31].

References

  1. Heterogeneity of Campylobacter jejuni and Campylobacter coli strains from healthy sheep. Açik, M.N., Cetinkaya, B. Vet. Microbiol. (2006) [Pubmed]
  2. Restriction fragment length polymorphism analysis and random amplified polymorphic DNA analysis of Campylobacter jejuni strains isolated from patients with Guillain-Barré syndrome. Fujimoto, S., Allos, B.M., Misawa, N., Patton, C.M., Blaser, M.J. J. Infect. Dis. (1997) [Pubmed]
  3. Use of luminescent Campylobacter jejuni ATCC 33291 to assess eggshell colonization and penetration in fresh and retail eggs. Allen, K.J., Griffiths, M.W. J. Food Prot. (2001) [Pubmed]
  4. PCR-mediated DNA fingerprinting of atypical campylobacter strains isolated from surface and drinking water. Jacob, J., Feuerpfeil, I., Schulze, E. Zentralbl. Bakteriol. (1996) [Pubmed]
  5. PseG of pseudaminic acid biosynthesis: a UDP-sugar hydrolase as a masked glycosyltransferase. Liu, F., Tanner, M.E. J. Biol. Chem. (2006) [Pubmed]
  6. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. Wassenaar, T.M., Bleumink-Pluym, N.M., van der Zeijst, B.A. EMBO J. (1991) [Pubmed]
  7. Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. McNally, D.J., Hui, J.P., Aubry, A.J., Mui, K.K., Guerry, P., Brisson, J.R., Logan, S.M., Soo, E.C. J. Biol. Chem. (2006) [Pubmed]
  8. Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Hendrixson, D.R., DiRita, V.J. Mol. Microbiol. (2003) [Pubmed]
  9. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Yao, R., Burr, D.H., Doig, P., Trust, T.J., Niu, H., Guerry, P. Mol. Microbiol. (1994) [Pubmed]
  10. Characterization of Campylobacter spp. using restriction fragment length polymorphism and SDS-polyacrylamide gel electrophoresis. Hadi, H.A., Mohran, Z.S., Hakam, A.A., Mourad, A., Oyofo, B.A. The Journal of the Egyptian Public Health Association (1998) [Pubmed]
  11. Genotyping of Human Campylobacter jejuni Isolates in Greece by Pulsed-Field Gel Electrophoresis. Ioannidis, A., Nicolaou, C., Legakis, N.J., Ioannidou, V., Papavasileiou, E., Voyatzi, A., Chatzipanagiotou, S. Molecular diagnosis & therapy (2006) [Pubmed]
  12. High-resolution genotyping of Campylobacter coli identifies clones of epidemiologic and evolutionary significance. Stanley, J., Linton, D., Sutherland, K., Jones, C., Owen, R.J. J. Infect. Dis. (1995) [Pubmed]
  13. Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. Dingle, K.E., Colles, F.M., Falush, D., Maiden, M.C. J. Clin. Microbiol. (2005) [Pubmed]
  14. Flagella as a potential marker for Campylobacter jejuni strains associated with Guillain-Barré syndrome. Tsang, R.S., Figueroa, G., Bryden, L., Ng, L. J. Clin. Microbiol. (2001) [Pubmed]
  15. Evaluation of methods for subtyping Campylobacter jejuni during an outbreak involving a food handler. Fitzgerald, C., Helsel, L.O., Nicholson, M.A., Olsen, S.J., Swerdlow, D.L., Flahart, R., Sexton, J., Fields, P.I. J. Clin. Microbiol. (2001) [Pubmed]
  16. Detection and characterization of autoagglutination activity by Campylobacter jejuni. Misawa, N., Blaser, M.J. Infect. Immun. (2000) [Pubmed]
  17. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Grant, C.C., Konkel, M.E., Cieplak, W., Tompkins, L.S. Infect. Immun. (1993) [Pubmed]
  18. Differential flagellin expression in a flaA flaB+ mutant of Campylobacter jejuni. Wassenaar, T.M., Bleumink-Pluym, N.M., Newell, D.G., Nuijten, P.J., van der Zeijst, B.A. Infect. Immun. (1994) [Pubmed]
  19. Identification of a new source of Campylobacter contamination in poultry: transmission from breeder hens to broiler chickens. Cox, N.A., Stern, N.J., Hiett, K.L., Berrang, M.E. Avian Dis. (2002) [Pubmed]
  20. Genotyping Campylobacter jejuni strains isolated from the gut and oviduct of laying hens. Camarda, A., Newell, D.G., Nasti, R., Di Modugnoa, G. Avian Dis. (2000) [Pubmed]
  21. Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma(28) promoter. Allen, K.J., Griffiths, M.W. FEMS Microbiol. Lett. (2001) [Pubmed]
  22. Growth of autobioluminescent Campylobacter jejuni in response to various environmental conditions. Kelana, L.C., Griffiths, M.W. J. Food Prot. (2003) [Pubmed]
  23. Physical and genetic map of the genome of Campylobacter upsaliensis. Bourke, B., Sherman, P., Louie, H., Hani, E., Islur, P., Chan, V.L. Microbiology (Reading, Engl.) (1995) [Pubmed]
  24. Detection of seven virulence and toxin genes of Campylobacter jejuni isolates from Danish turkeys by PCR and cytolethal distending toxin production of the isolates. Bang, D.D., Borck, B., Nielsen, E.M., Scheutz, F., Pedersen, K., Madsen, M. J. Food Prot. (2004) [Pubmed]
  25. Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Jeon, B., Itoh, K., Misawa, N., Ryu, S. Microbiol. Immunol. (2003) [Pubmed]
  26. PCR detection of seven virulence and toxin genes of Campylobacter jejuni and Campylobacter coli isolates from Danish pigs and cattle and cytolethal distending toxin production of the isolates. Bang, D.D., Nielsen, E.M., Scheutz, F., Pedersen, K., Handberg, K., Madsen, M. J. Appl. Microbiol. (2003) [Pubmed]
  27. The first database comprised of flagellin gene (flaA) types of Campylobacter jejuni human clinical isolates from Greece. Ioannidis, A., Nicolaou, C., Legakis, N.J., Ioannidou, V., Chatzipanagiotou, S. Eur. J. Epidemiol. (2006) [Pubmed]
  28. Common and variable domains of the flagellin gene, flaA, in Campylobacter jejuni. Fischer, S.H., Nachamkin, I. Mol. Microbiol. (1991) [Pubmed]
  29. Generation of Campylobacter jejuni genetic diversity in vivo. Boer, P., Wagenaar, J.A., Achterberg, R.P., Putten, J.P., Schouls, L.M., Duim, B. Mol. Microbiol. (2002) [Pubmed]
  30. Fingerprinting of Campylobacter jejuni by Using Resolution-Optimized Binary Gene Targets Derived from Comparative Genome Hybridization Studies. Price, E.P., Huygens, F., Giffard, P.M. Appl. Environ. Microbiol. (2006) [Pubmed]
  31. Computer-assisted analysis and epidemiological value of genotyping methods for Campylobacter jejuni and Campylobacter coli. de Boer, P., Duim, B., Rigter, A., van Der Plas, J., Jacobs-Reitsma, W.F., Wagenaar, J.A. J. Clin. Microbiol. (2000) [Pubmed]
 
WikiGenes - Universities