The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

VAR  -  erythrocyte membrane protein 1, PfEMP1

Plasmodium falciparum 3D7

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of VAR

  • The profound changes in the morphology, antigenicity, and functional properties of the host erythrocyte membrane induced by intraerythrocytic parasites of the human malaria Plasmodium falciparum are poorly understood at the molecular level [1].
  • Since antiplasmodial agents that inhibit parasite growth through erythrocyte membrane modifications must be regarded as unsuitable as leads for development of new antimalarial drugs, care must be exercised in the interpretation of results of screening of plant extracts and natural product libraries by an in vitro Plasmodium toxicity assay [2].
  • Symptomatic children also had the highest immunoglobulin G (IgG) reactivities to conserved P. falciparum erythrocyte membrane protein 1 and "Pfalhesin" (band #3) peptides, indicating that such IgG antibodies are stimulated by acute disease but are lost rapidly after the disease episode [3].
  • These signaling cascades may have important influences on in vivo malarial infection, as well as on erythrocyte membrane flexibility and adhesiveness in sickle cell anemia [4].
  • Four P. falciparum strains, including a multi-drug-resistant strain (MDR-K), a drug-sensitive strain (FCR-3), a erythrocyte membrane sialic acid-independent strain (7G8) and a strain isolated from a cerebral malaria patient (CM-87) were equally susceptible to treatment with a phosphorothioate oligomer [5].
 

High impact information on VAR

 

Chemical compound and disease context of VAR

 

Biological context of VAR

 

Anatomical context of VAR

 

Associations of VAR with chemical compounds

 

Physical interactions of VAR

  • Here we report the identification of a var gene transcribed in association with binding to CSA and present evidence that the P. falciparum erythrocyte membrane protein 1 product of the gene is the parasite ligand mediating CSA binding [24].
 

Other interactions of VAR

 

Analytical, diagnostic and therapeutic context of VAR

  • Here we report on the identification by single-cell reverse transcriptase PCR and cDNA cloning of the adhesive ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1) [32].
  • However, antibodies to P. coatneyi did not cross-react with P. falciparum RESA in erythrocyte membrane immunofluorescence assay and dot immunoblot analysis, suggesting that different immunogenic epitopes are present on the two molecules [33].
  • To identify such proteases, soluble cytosolic extract of isolated trophozoites/schizonts was incubated with erythrocyte membrane ghosts or spectrin-actin depleted inside-out vesicles, which were then analyzed by SDS-PAGE [34].
  • Serial sections of mature parasites fixed and stained by various methods for transmission electron microscopy reveal areas of apparent membrane continuity between the erythrocyte membrane and the parasitophorous vacuolar membrane that surrounds the parasite, that could leave the parasites exposed to the external medium [35].
  • These vesicle complexes were often associated with and closely abutted the erythrocyte membrane, but were apparently prevented from fusing by the aluminium fluoride treatment, making their capture by electron microscopy possible [36].

References

  1. Transport of an Mr approximately 300,000 Plasmodium falciparum protein (Pf EMP 2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. Howard, R.J., Lyon, J.A., Uni, S., Saul, A.J., Aley, S.B., Klotz, F., Panton, L.J., Sherwood, J.A., Marsh, K., Aikawa, M. J. Cell Biol. (1987) [Pubmed]
  2. In vitro Plasmodium falciparum drug sensitivity assay: inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane. Ziegler, H.L., Staerk, D., Christensen, J., Hviid, L., Hägerstrand, H., Jaroszewski, J.W. Antimicrob. Agents Chemother. (2002) [Pubmed]
  3. Decreased antitoxic activities among children with clinical episodes of malaria. Jakobsen, P.H., McKay, V., N'Jie, R., Olaleye, B.O., D'Alessandro, U., Zhang, G.H., Eggelte, T.A., Koch, C., Greenwood, B.M. Infect. Immun. (1998) [Pubmed]
  4. Lipid rafts and malaria parasite infection of erythrocytes (Review). Murphy, S.C., Hiller, N.L., Harrison, T., Lomasney, J.W., Mohandas, N., Haldar, K. Mol. Membr. Biol. (2006) [Pubmed]
  5. Non-sequence-specific antimalarial activity of oligodeoxynucleotides. Clark, D.L., Chrisey, L.A., Campbell, J.R., Davidson, E.A. Mol. Biochem. Parasitol. (1994) [Pubmed]
  6. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Crabb, B.S., Cooke, B.M., Reeder, J.C., Waller, R.F., Caruana, S.R., Davern, K.M., Wickham, M.E., Brown, G.V., Coppel, R.L., Cowman, A.F. Cell (1997) [Pubmed]
  7. Developmental selection of var gene expression in Plasmodium falciparum. Chen, Q., Fernandez, V., Sundström, A., Schlichtherle, M., Datta, S., Hagblom, P., Wahlgren, M. Nature (1998) [Pubmed]
  8. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Sim, B.K., Chitnis, C.E., Wasniowska, K., Hadley, T.J., Miller, L.H. Science (1994) [Pubmed]
  9. Pfs2400 can mediate antibody-dependent malaria transmission inhibition and may be the Plasmodium falciparum 11.1 gene product. Feng, Z., Hoffmann, R.N., Nussenzweig, R.S., Tsuji, M., Fujioka, H., Aikawa, M., Lensen, T.H., Ponnudurai, T., Pologe, L.G. J. Exp. Med. (1993) [Pubmed]
  10. Localization of the ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum in merozoites and ring-infected erythrocytes. Brown, G.V., Culvenor, J.G., Crewther, P.E., Bianco, A.E., Coppel, R.L., Saint, R.B., Stahl, H.D., Kemp, D.J., Anders, R.F. J. Exp. Med. (1985) [Pubmed]
  11. Studies on malaria in Papua New Guinea: comparison of the surface glycoproteins on red blood cells from infected and uninfected individuals. Howard, R.J., Brown, G.V., Smith, P.M., Mitchell, G.F., Stace, J.D., Alpers, M.P., Wember, M., Schauer, R. Parasitology (1981) [Pubmed]
  12. Reevaluation, using marker enzymes, of the ability of saponin and ammonium chloride to free Plasmodium from infected erythrocytes. Beaumelle, B.D., Vial, H.J., Philippot, J.R. J. Parasitol. (1987) [Pubmed]
  13. Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells. Haldar, K., de Amorim, A.F., Cross, G.A. J. Cell Biol. (1989) [Pubmed]
  14. Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. Waterkeyn, J.G., Wickham, M.E., Davern, K.M., Cooke, B.M., Coppel, R.L., Reeder, J.C., Culvenor, J.G., Waller, R.F., Cowman, A.F. EMBO J. (2000) [Pubmed]
  15. Antigenic variation in Plasmodium falciparum. Biggs, B.A., Goozé, L., Wycherley, K., Wollish, W., Southwell, B., Leech, J.H., Brown, G.V. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  16. Virulence and transmission success of the malarial parasite Plasmodium falciparum. Hayward, R.E., Tiwari, B., Piper, K.P., Baruch, D.I., Day, K.P. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. Day, K.P., Karamalis, F., Thompson, J., Barnes, D.A., Peterson, C., Brown, H., Brown, G.V., Kemp, D.J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  18. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Rowe, J.A., Moulds, J.M., Newbold, C.I., Miller, L.H. Nature (1997) [Pubmed]
  19. A Maurer's cleft-associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. Cooke, B.M., Buckingham, D.W., Glenister, F.K., Fernandez, K.M., Bannister, L.H., Marti, M., Mohandas, N., Coppel, R.L. J. Cell Biol. (2006) [Pubmed]
  20. Membrane transformation during malaria parasite release from human red blood cells. Glushakova, S., Yin, D., Li, T., Zimmerberg, J. Curr. Biol. (2005) [Pubmed]
  21. Selective inhibition of a two-step egress of malaria parasites from the host erythrocyte. Wickham, M.E., Culvenor, J.G., Cowman, A.F. J. Biol. Chem. (2003) [Pubmed]
  22. Xanthine oxidase inhibits growth of Plasmodium falciparum in human erythrocytes in vitro. Berman, P.A., Human, L., Freese, J.A. J. Clin. Invest. (1991) [Pubmed]
  23. Invasion of erythrocytes by malaria parasites: a cellular and molecular overview. Hadley, T.J. Annu. Rev. Microbiol. (1986) [Pubmed]
  24. The adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1. Reeder, J.C., Cowman, A.F., Davern, K.M., Beeson, J.G., Thompson, J.K., Rogerson, S.J., Brown, G.V. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  25. Stage-specific proteins and glycoproteins of plasmodium falciparum: identification of antigens unique to schizonts and merozoites. Kilejian, A. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  26. Isolation and characterization of the plasma membrane of human erythrocytes infected with the malarial parasite Plasmodium falciparum. Gruenberg, J., Sherman, I.W. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  27. Structural and functional studies of interaction between Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and erythrocyte spectrin. Pei, X., An, X., Guo, X., Tarnawski, M., Coppel, R., Mohandas, N. J. Biol. Chem. (2005) [Pubmed]
  28. The mature-parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum associates with the erythrocyte membrane skeletal protein, band 4.1. Lustigman, S., Anders, R.F., Brown, G.V., Coppel, R.L. Mol. Biochem. Parasitol. (1990) [Pubmed]
  29. Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Lavazec, C., Sanyal, S., Templeton, T.J. Nucleic Acids Res. (2006) [Pubmed]
  30. Characterization of the choline carrier of Plasmodium falciparum: a route for the selective delivery of novel antimalarial drugs. Biagini, G.A., Pasini, E.M., Hughes, R., De Koning, H.P., Vial, H.J., O'Neill, P.M., Ward, S.A., Bray, P.G. Blood (2004) [Pubmed]
  31. Plasmodium falciparum merozoite surface protein 6 (MSP-6) derived peptides bind erythrocytes and partially inhibit parasite invasion. López, R., Valbuena, J., Rodríguez, L.E., Ocampo, M., Vera, R., Curtidor, H., Puentes, A., García, J., Ramirez, L.E., Patarroyo, M.E. Peptides (2006) [Pubmed]
  32. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. Chen, Q., Barragan, A., Fernandez, V., Sundström, A., Schlichtherle, M., Sahlén, A., Carlson, J., Datta, S., Wahlgren, M. J. Exp. Med. (1998) [Pubmed]
  33. Plasmodium coatneyi ring-infected erythrocyte surface antigens. Udomsangpetch, R., Brown, A.E., Smith, C.D., Webster, H.K. Am. J. Trop. Med. Hyg. (1993) [Pubmed]
  34. A cysteine protease activity from Plasmodium falciparum cleaves human erythrocyte ankyrin. Raphael, P., Takakuwa, Y., Manno, S., Liu, S.C., Chishti, A.H., Hanspal, M. Mol. Biochem. Parasitol. (2000) [Pubmed]
  35. Characterization of macromolecular transport pathways in malaria-infected erythrocytes. Goodyer, I.D., Pouvelle, B., Schneider, T.G., Trelka, D.P., Taraschi, T.F. Mol. Biochem. Parasitol. (1997) [Pubmed]
  36. Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Taraschi, T.F., Trelka, D., Martinez, S., Schneider, T., O'Donnell, M.E. Int. J. Parasitol. (2001) [Pubmed]
 
WikiGenes - Universities