The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PLCB2  -  phospholipase C, beta 2

Homo sapiens

Synonyms: 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2, FLJ38135, PLC-beta-2, Phosphoinositide phospholipase C-beta-2, Phospholipase C-beta-2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PLCB2


High impact information on PLCB2


Chemical compound and disease context of PLCB2

  • In order to investigate whether mastoparan stimulate PLC via pertussis toxin-insensitive alpha q, a deletion mutant of PLC beta 2 deficient of the site of interaction with alpha q-subunits was expressed in COS-1 cells [9].

Biological context of PLCB2


Anatomical context of PLCB2

  • Using the yeast two-hybrid technique to screen a leukocyte library we identified mitogen-activated protein kinase kinase 3 (MKK3) as a partner of PLC-beta 2 [15].
  • Taken together, these data show that PLC-beta2 represents a sensitive and reliable marker of neutrophil maturation of normal and malignant myeloid progenitors [11].
  • Remarkably, using primary blasts purified from bone marrow of patients affected by APL successfully induced to remission by treatment with ATRA, we showed a striking correlation between the amount of PLC-beta2 expression and the responsiveness of APL blasts to the differentiative activity of ATRA [11].
  • We found the sequence extending from residue Glu-435 to residue Val-641 inhibited Gbeta-gamma-mediated activation of PLC beta2 in transfected COS-7 cells [16].
  • PLD and PI-PLC activities in these four transfected cell lines as well as in nontransfected cells were measured by the formation of [3H]phosphatidylethanol [( 3H]PEt) and [3H]inositol phosphates [( 3H]IP) after labeling cellular phospholipids with [3H]oleic acid and [3H]inositol [17].

Associations of PLCB2 with chemical compounds


Physical interactions of PLCB2


Regulatory relationships of PLCB2

  • An increase of PLC-beta2 expression also characterized the cytokine-induced granulocytic differentiation of CD34+ normal hematopoietic progenitors [11].
  • Furthermore, we found that coexpression of G alpha 16 and G beta 1 gamma 1 but not G beta 1 gamma 5 in COS-7 cells was able to synergistically activate recombinant PLC beta 2 [13].
  • In contrast, G alpha 11 promoted only a small elevation in the catalytic rate of recombinant PLC-beta 2, which was also typical of the native isoenzyme [22].
  • Phospholipase C beta2 (PLC beta2) is activated by G protein betagamma subunits and calcium [23].
  • In previous work (Sankaran, B., Osterhout, J., Wu, D., and Smrcka, A. V. (1998) J. Biol. Chem. 273, 7148-7154), we showed that overlapping peptides, N20K (Asn(564)-Lys(583)) and E20K (Glu(574)-Lys(593)), from the catalytic domain of phospholipase C (PLC) beta2 block Gbetagamma-dependent activation of PLC beta2 [24].

Other interactions of PLCB2

  • Together, these findings present a quantitative evaluation of the direct interactions between Rac GTPases and PLC-beta isozymes and define a novel role for the PH domain of PLC-beta2 as a putative effector site for Rac GTPases [25].
  • Case-control analyses revealed modest evidence (0.01 < P < 0.05) for association between a single variant in PLCB2 and two variants in PLA2G4B [26].
  • Compared with normal platelets, platelets from the patient contained approximately one-third the amount of PLC-beta 2, whereas PLC-beta 4 was increased threefold [27].
  • These results suggest that the impaired platelet function in the patient in response to multiple G protein mediated agonists is attributable to a deficiency of PLC-beta 2 [27].
  • The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac [25].

Analytical, diagnostic and therapeutic context of PLCB2


  1. Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. Park, D., Jhon, D.Y., Kriz, R., Knopf, J., Rhee, S.G. J. Biol. Chem. (1992) [Pubmed]
  2. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Camps, M., Carozzi, A., Schnabel, P., Scheer, A., Parker, P.J., Gierschik, P. Nature (1992) [Pubmed]
  3. Mechanosensitivity of human osteosarcoma cells and phospholipase C beta2 expression. Hoberg, M., Gratz, H.H., Noll, M., Jones, D.B. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  4. Decrease in thromboxane A2 receptor expression by differentiation with dibutyryl cyclic AMP in 1321N1 human astrocytoma cells. Honma, S., Nakahata, N., Kobayashi, H., Ikeda, S., Takeda, N., Ohizumi, Y. Prostaglandins Other Lipid Mediat. (1999) [Pubmed]
  5. PLC-beta2 is highly expressed in breast cancer and is associated with a poor outcome: a study on tissue microarrays. Bertagnolo, V., Benedusi, M., Querzoli, P., Pedriali, M., Magri, E., Brugnoli, F., Capitani, S. Int. J. Oncol. (2006) [Pubmed]
  6. Regulation by cAMP-dependent protein kinease of a G-protein-mediated phospholipase C. Liu, M., Simon, M.I. Nature (1996) [Pubmed]
  7. Molecular basis for interactions of G protein betagamma subunits with effectors. Ford, C.E., Skiba, N.P., Bae, H., Daaka, Y., Reuveny, E., Shekter, L.R., Rosal, R., Weng, G., Yang, C.S., Iyengar, R., Miller, R.J., Jan, L.Y., Lefkowitz, R.J., Hamm, H.E. Science (1998) [Pubmed]
  8. Nuclear lipid signalling. Irvine, R.F. Nat. Rev. Mol. Cell Biol. (2003) [Pubmed]
  9. G protein-independent stimulation of human myocardial phospholipase C by mastoparan. Schnabel, P., Gäs, H., Nohr, T., Böhm, M. Br. J. Pharmacol. (1997) [Pubmed]
  10. The Pleckstrin homology domains of phospholipases C-beta and -delta confer activation through a common site. Guo, Y., Philip, F., Scarlata, S. J. Biol. Chem. (2003) [Pubmed]
  11. Selective up-regulation of phospholipase C-beta2 during granulocytic differentiation of normal and leukemic hematopoietic progenitors. Bertagnolo, V., Marchisio, M., Pierpaoli, S., Colamussi, M.L., Brugnoli, F., Visani, G., Zauli, G., Capitani, S. J. Leukoc. Biol. (2002) [Pubmed]
  12. Assignment1 of human PLCB2 encoding PLC beta2 to human chromosome 15q15 by fluorescence in situ hybridization. Park, S.H., Ryu, S.H., Suh, P.G., Kim, H. Cytogenet. Cell Genet. (1998) [Pubmed]
  13. Activation of phospholipase C beta 2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Wu, D., Katz, A., Simon, M.I. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  14. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. Herrlich, A., Kühn, B., Grosse, R., Schmid, A., Schultz, G., Gudermann, T. J. Biol. Chem. (1996) [Pubmed]
  15. Phospholipase C-beta 2 interacts with mitogen-activated protein kinase kinase 3. Barr, A.J., Marjoram, R., Xu, J., Snyderman, R. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  16. Identification of a phospholipase C beta2 region that interacts with Gbeta-gamma. Kuang, Y., Wu, Y., Smrcka, A., Jiang, H., Wu, D. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  17. Coupling of transfected muscarinic acetylcholine receptor subtypes to phospholipase D. Sandmann, J., Peralta, E.G., Wurtman, R.J. J. Biol. Chem. (1991) [Pubmed]
  18. Selective interaction of the C2 domains of phospholipase C-beta1 and -beta2 with activated Galphaq subunits: an alternative function for C2-signaling modules. Wang, T., Pentyala, S., Elliott, J.T., Dowal, L., Gupta, E., Rebecchi, M.J., Scarlata, S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  19. Pertussis toxin-sensitive activation of phospholipase C by the C5a and fMet-Leu-Phe receptors. Jiang, H., Kuang, Y., Wu, Y., Smrcka, A., Simon, M.I., Wu, D. J. Biol. Chem. (1996) [Pubmed]
  20. Dependence of the activity of phospholipase C beta on surface pressure and surface composition in phospholipid monolayers and its implications for their regulation. James, S.R., Paterson, A., Harden, T.K., Demel, R.A., Downes, C.P. Biochemistry (1997) [Pubmed]
  21. Identification of a structural element in phospholipase C beta2 that interacts with G protein betagamma subunits. Sankaran, B., Osterhout, J., Wu, D., Smrcka, A.V. J. Biol. Chem. (1998) [Pubmed]
  22. Concentration of enzyme-dependent activation of PLC-beta 1 and PLC-beta 2 by G alpha 11 and beta gamma-subunits. Paterson, A., Boyer, J.L., Watts, V.J., Morris, A.J., Price, E.M., Harden, T.K. Cell. Signal. (1995) [Pubmed]
  23. Phospholipase C beta2 association with phospholipid interfaces assessed by fluorescence resonance energy transfer. G protein betagamma subunit-mediated translocation is not required for enzyme activation. Romoser, V., Ball, R., V Smrcka, A. J. Biol. Chem. (1996) [Pubmed]
  24. Characterization of a phospholipase C beta 2-binding site near the amino-terminal coiled-coil of G protein beta gamma subunits. Yoshikawa, D.M., Bresciano, K., Hatwar, M., Smrcka, A.V. J. Biol. Chem. (2001) [Pubmed]
  25. The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac. Snyder, J.T., Singer, A.U., Wing, M.R., Harden, T.K., Sondek, J. J. Biol. Chem. (2003) [Pubmed]
  26. Association analysis of two candidate phospholipase genes that map to the chromosome 15q15.1-15.3 region associated with reading disability. Morris, D.W., Ivanov, D., Robinson, L., Williams, N., Stevenson, J., Owen, M.J., Williams, J., O'Donovan, M.C. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2004) [Pubmed]
  27. Decreased expression of phospholipase C-beta 2 isozyme in human platelets with impaired function. Lee, S.B., Rao, A.K., Lee, K.H., Yang, X., Bae, Y.S., Rhee, S.G. Blood (1996) [Pubmed]
  28. Phospholipase C-beta3 and -beta1 form homodimers, but not heterodimers, through catalytic and carboxyl-terminal domains. Zhang, Y., Vogel, W.K., McCullar, J.S., Greenwood, J.A., Filtz, T.M. Mol. Pharmacol. (2006) [Pubmed]
  29. Signaling networks from Gbeta1 subunit to transcription factors and actin remodeling via a membrane-located ERbeta-related protein in the rapid action of daidzein in osteoblasts. De Wilde, A., Heberden, C., Chaumaz, G., Bordat, C., Lieberherr, M. J. Cell. Physiol. (2006) [Pubmed]
  30. Regulation of eosinophil function by phosphatidylinositol-specific PLC and cytosolic PLA(2). Sano, A., Zhu, X., Sano, H., Muñoz, N.M., Boetticher, E., Leff, A.R. Am. J. Physiol. Lung Cell Mol. Physiol. (2001) [Pubmed]
  31. Mutational analysis of phospholipase C-beta 2. Identification of regions required for membrane association and stimulation by guanine-nucleotide-binding protein beta gamma subunits. Schnabel, P., Camps, M., Carozzi, A., Parker, P.J., Gierschik, P. Eur. J. Biochem. (1993) [Pubmed]
WikiGenes - Universities