The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SMN1  -  survival of motor neuron 1, telomeric

Homo sapiens

Synonyms: BCD541, GEMIN1, SMA, SMA1, SMA2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SMN1

 

High impact information on SMN1

  • Here we show that the C/T transition functions not to disrupt an exonic splicing enhancer (ESE) in SMN1 (ref. 4), as previously suggested, but rather to create an exonic splicing silencer (ESS) in SMN2 [2].
  • Like the SMN1 product, IGHMBP2 colocalizes with the RNA-processing machinery in both the cytoplasm and the nucleus [8].
  • Classic spinal muscular atrophy (SMA) is caused by mutations in the telomeric copy of SMN1 [8].
  • Two closely flanking copies of the survival motor neuron (SMN) gene are on chromosome 5q13 (ref. 1). The telomeric SMN (SMN1) copy is homozygously deleted or converted in >95% of SMA patients, while a small number of SMA disease alleles contain missense mutations within the carboxy terminus [9].
  • Although NAIP protein is known to have an anti-apoptotic function, the function of SMN has been unclear and it shows no significant sequence similarity to any other protein [10].
 

Chemical compound and disease context of SMN1

 

Biological context of SMN1

 

Anatomical context of SMN1

 

Associations of SMN1 with chemical compounds

 

Physical interactions of SMN1

 

Regulatory relationships of SMN1

  • RT-PCR studies of SMN transcripts in control and patients with the same SMN2 copy number showed that the full-length/Delta7 ratio is influenced by the SMN1 genotype although it seems independent of the SMN2 copy number [23].
 

Other interactions of SMN1

  • Our results demonstrate that SMN2 can partially compensate for lack of SMN1 [1].
  • Both SMN1 and NAIP genes showed homozygous absence in 76% and 31% respectively in proximal SMA patients [24].
  • SMN1 interacts with multiple proteins with functions in snRNP biogenesis, pre-mRNA splicing and presumably neural transport [16].
  • Methods: To detect the C117T variant in a Japanese population, polymerase chain reaction-restriction fragment length polymorphism was performed in 33 SMA patients homozygous for SMN1 deletion and 106 control individuals [25].
  • This case provides strong support that SCO2 mutations can result in neonatal hypotonia with an SMA 1 phenotype [26].
 

Analytical, diagnostic and therapeutic context of SMN1

 

References

  1. A mouse model for spinal muscular atrophy. Hsieh-Li, H.M., Chang, J.G., Jong, Y.J., Wu, M.H., Wang, N.M., Tsai, C.H., Li, H. Nat. Genet. (2000) [Pubmed]
  2. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Kashima, T., Manley, J.L. Nat. Genet. (2003) [Pubmed]
  3. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Feldkötter, M., Schwarzer, V., Wirth, R., Wienker, T.F., Wirth, B. Am. J. Hum. Genet. (2002) [Pubmed]
  4. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Wirth, B., Herz, M., Wetter, A., Moskau, S., Hahnen, E., Rudnik-Schöneborn, S., Wienker, T., Zerres, K. Am. J. Hum. Genet. (1999) [Pubmed]
  5. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Jarecki, J., Chen, X., Bernardino, A., Coovert, D.D., Whitney, M., Burghes, A., Stack, J., Pollok, B.A. Hum. Mol. Genet. (2005) [Pubmed]
  6. Spinal muscular atrophy: present state. Schmalbruch, H., Haase, G. Brain Pathol. (2001) [Pubmed]
  7. Homozygous exon 7 deletion of the SMN centromeric gene (SMN2): a potential susceptibility factor for adult-onset lower motor neuron disease. Echaniz-Laguna, A., Guiraud-Chaumeil, C., Tranchant, C., Reeber, A., Melki, J., Warter, J.M. J. Neurol. (2002) [Pubmed]
  8. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Grohmann, K., Schuelke, M., Diers, A., Hoffmann, K., Lucke, B., Adams, C., Bertini, E., Leonhardt-Horti, H., Muntoni, F., Ouvrier, R., Pfeufer, A., Rossi, R., Van Maldergem, L., Wilmshurst, J.M., Wienker, T.F., Sendtner, M., Rudnik-Schöneborn, S., Zerres, K., Hübner, C. Nat. Genet. (2001) [Pubmed]
  9. SMN oligomerization defect correlates with spinal muscular atrophy severity. Lorson, C.L., Strasswimmer, J., Yao, J.M., Baleja, J.D., Hahnen, E., Wirth, B., Le, T., Burghes, A.H., Androphy, E.J. Nat. Genet. (1998) [Pubmed]
  10. Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy. Iwahashi, H., Eguchi, Y., Yasuhara, N., Hanafusa, T., Matsuzawa, Y., Tsujimoto, Y. Nature (1997) [Pubmed]
  11. Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. Boisvert, F.M., Cote, J., Boulanger, M.C., Cleroux, P., Bachand, F., Autexier, C., Richard, S. J. Cell Biol. (2002) [Pubmed]
  12. In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate. Brichta, L., Holker, I., Haug, K., Klockgether, T., Wirth, B. Ann. Neurol. (2006) [Pubmed]
  13. In vitro restoration of functional SMN protein in human trophoblast cells affected by spinal muscular atrophy by small fragment homologous replacement. Sangiuolo, F., Filareto, A., Spitalieri, P., Scaldaferri, M.L., Mango, R., Bruscia, E., Citro, G., Brunetti, E., De Felici, M., Novelli, G. Hum. Gene Ther. (2005) [Pubmed]
  14. Genetic testing and risk assessment for spinal muscular atrophy (SMA). Ogino, S., Wilson, R.B. Hum. Genet. (2002) [Pubmed]
  15. New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. Ogino, S., Wilson, R.B., Gold, B. Eur. J. Hum. Genet. (2004) [Pubmed]
  16. Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1. Helmken, C., Hofmann, Y., Schoenen, F., Oprea, G., Raschke, H., Rudnik-Schöneborn, S., Zerres, K., Wirth, B. Hum. Genet. (2003) [Pubmed]
  17. Multiplex nested PCR for preimplantation genetic diagnosis of spinal muscular atrophy. Malcov, M., Schwartz, T., Mei-Raz, N., Yosef, D.B., Amit, A., Lessing, J.B., Shomrat, R., Orr-Urtreger, A., Yaron, Y. Fetal. Diagn. Ther. (2004) [Pubmed]
  18. Prenatal prediction of childhood-onset spinal muscular atrophy (SMA) in Turkish families. Savas, S., Eraslan, S., Kantarci, S., Karaman, B., Acarsoz, D., Tükel, T., Cogulu, O., Ozkinay, F., Basaran, S., Aydinli, K., Yuksel-Apak, M., Kirdar, B. Prenat. Diagn. (2002) [Pubmed]
  19. Spinal muscular atrophy: molecular pathophysiology. Gendron, N.H., MacKenzie, A.E. Curr. Opin. Neurol. (1999) [Pubmed]
  20. Survival motor neuron protein modulates neuron-specific apoptosis. Kerr, D.A., Nery, J.P., Traystman, R.J., Chau, B.N., Hardwick, J.M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  21. The spinal muscular atrophy disease gene product, SMN: A link between snRNP biogenesis and the Cajal (coiled) body. Carvalho, T., Almeida, F., Calapez, A., Lafarga, M., Berciano, M.T., Carmo-Fonseca, M. J. Cell Biol. (1999) [Pubmed]
  22. Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). Friesen, W.J., Dreyfuss, G. J. Biol. Chem. (2000) [Pubmed]
  23. A genetic and phenotypic analysis in Spanish spinal muscular atrophy patients with c.399_402del AGAG, the most frequently found subtle mutation in the SMN1 gene. Cuscó, I., López, E., Soler-Botija, C., Jesús Barceló, M., Baiget, M., Tizzano, E.F. Hum. Mutat. (2003) [Pubmed]
  24. Study of survival of motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) gene deletions in SMA patients. Kesari, A., Misra, U.K., Kalita, J., Mishra, V.N., Pradhan, S., Patil, S.J., Phadke, S.R., Mittal, B. J. Neurol. (2005) [Pubmed]
  25. C117T variant in the SMN1 gene found in the Japanese population. Sadewa, A.H., Harada, Y., Sasongko, T.H., Matsuo, M., Nishio, H. Pediatrics international : official journal of the Japan Pediatric Society (2007) [Pubmed]
  26. Novel SCO2 mutation (G1521A) presenting as a spinal muscular atrophy type I phenotype. Tarnopolsky, M.A., Bourgeois, J.M., Fu, M.H., Kataeva, G., Shah, J., Simon, D.K., Mahoney, D., Johns, D., MacKay, N., Robinson, B.H. Am. J. Med. Genet. A (2004) [Pubmed]
  27. An essential SMN interacting protein (SIP1) is not involved in the phenotypic variability of spinal muscular atrophy (SMA). Helmken, C., Wetter, A., Rudnik-Schöneborn, S., Liehr, T., Zerres, K., Wirth, B. Eur. J. Hum. Genet. (2000) [Pubmed]
  28. Quantification of relative gene dosage by single-base extension and high-performance liquid chromatography: application to the SMN1/SMN2 gene. Hung, C.C., Lee, C.N., Chen, C.P., Jong, Y.J., Chen, C.A., Cheng, W.F., Lin, W.L., Su, Y.N. Anal. Chem. (2005) [Pubmed]
 
WikiGenes - Universities