The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

LSM4  -  LSM4 homolog, U6 small nuclear RNA...

Homo sapiens

Synonyms: GRP, Glycine-rich protein, U6 snRNA-associated Sm-like protein LSm4, YER112W
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of LSM4


High impact information on LSM4


Chemical compound and disease context of LSM4


Biological context of LSM4

  • Furthermore, adding a fourth sample (e.g., LSM 4) did not substantially decrease the bias or increase the accuracy for temozolomide clearance or MTIC AUC [16].
  • The reactive epitopes on p542 were mapped with deletion mutants, which indicated that the glycine-rich 28-mer was the major antigenic determinant, with lesser antibody responses to other epitopes [3].
  • However, we observed many variations in the V2 subdomain near the C terminus in glycine-rich sequences with a variation of as much as 114 base pairs (38 amino acids), but all individuals had either one or two variants [17].
  • These mRNA changes include differential regulation of transcripts derived from the GRP and HRGP multigene families [18].
  • The GRP promoters contain multiple copies of the ER stress response element (ERSE), consisting of a unique tripartite structure, CCAAT(N(9))CCACG [19].

Anatomical context of LSM4


Associations of LSM4 with chemical compounds

  • Furthermore, the carboxyl-terminal arginine- and glycine-rich domain of Lsm4 directly interacts with SMN [24].
  • All three putative gene products contain a single RNA Recognition Motif (RRM) that includes the highly conserved RNP1 and RNP2 regions and all three have an auxiliary motif consisting either of a short glycine-rich carboxy-terminal tail or a carboxy-terminal tail rich in both asparagine and glycine [25].
  • Many ATP- and GTP-binding proteins have a phosphate-binding loop (P-loop), the primary structure of which typically consists of a glycine-rich sequence followed by a conserved lysine and a serine or threonine [26].
  • The NH2-terminal half of the antigen contains two conserved RNA binding domains whereas its COOH-terminal part is extremely glycine-rich [27].
  • O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation [28].

Physical interactions of LSM4

  • The verprolin-homology region in N-WASP was required for binding to the glycine-rich repeats domain of VirG, an essential domain for recruitment of F-actin on intracellular S.flexneri [29].
  • By deletion analysis, we mapped the apobec-1-binding region to the glycine-rich domain [30].
  • Cdc37 interacts with the glycine-rich loop of Hsp90 client kinases [31].
  • The purified reductase cross-reacted with polyclonal antibodies against both hepatic NADPH-cytochrome P-450 reductase and a synthetic peptide, ILVGPGTGIAPFRSF, which indicates residues 529-543 located in the glycine-rich NADPH-binding domain of the P-450 reductase, but cytochrome b558 did not produce any immunoreactive bands to these antibodies [32].
  • JKTBP proteins consisting of two canonical RNA binding domains (RBDs) and a glycine-rich carboxyl domain are nucleocytoplasmic shuttling proteins [33].

Enzymatic interactions of LSM4


Other interactions of LSM4

  • These findings demonstrate that arginine- and glycine-rich domains are necessary and sufficient for SMN interaction, and they expand further the range of targets of the SMN protein [24].
  • SMN binds preferentially and directly to the symmetrical dimethylarginine (sDMA)-modified arginine- and glycine-rich (RG-rich) domains of SmD1 and SmD3 [35].
  • SMN interaction requires the arginine- and glycine-rich domains of both fibrillarin and GAR1 and is defective in SMN mutants found in some SMA patients [36].
  • Our results argue against post-translational arginine dimethylation as a general requirement for SMN recognition of proteins bearing arginine/glycine-rich domains [37].
  • Furthermore, we find that either of the two arginine/glycine-rich domains of GAR1 can provide for interaction with SMN, but removal of both results in loss of the interaction [37].

Analytical, diagnostic and therapeutic context of LSM4

  • Female nude mice bearing orthotopic xenografts of MDA-MB-435 human estrogen-independent breast cancers were treated daily with BN/GRP antagonists RC-3095 (20 microg) or RC-3940-II (10 microg) for 6 weeks [38].
  • A new, clearly distinct structural element containing glycine-rich proteins is now visualized for the first time, using confocal laser scanning microscopy in the mature protoxylem of elongating organs of seed plants [39].
  • Sequence analysis of the cDNA indicated that the plastid Protox of spinach is composed of 562 amino acids containing the glycine-rich motif GxGxxG previously proposed to be a dinucleotide binding site of many flavin-containing proteins [40].
  • Comparative sequence alignment of Pa-RRM-GRP1 reveals extensive homology to known and presumed glycine-rich RNA binding proteins from angiosperms and gymnosperms [41].
  • The marked species charge heterogeneity of the 2-D pattern was used as a criterion to assign the majority of GRP components to "series'. Series are composed of families of related proteins or glycoproteins distributed in a line of evenly spaced members in the isoelectric focusing dimension [42].


  1. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Gómez, J., Sánchez-Martínez, D., Stiefel, V., Rigau, J., Puigdomènech, P., Pagès, M. Nature (1988) [Pubmed]
  2. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Ramakrishnan, L., Federspiel, N.A., Falkow, S. Science (2000) [Pubmed]
  3. Epstein-Barr virus-induced autoimmune responses. II. Immunoglobulin G autoantibodies to mimicking and nonmimicking epitopes. Presence in autoimmune disease. Vaughan, J.H., Nguyen, M.D., Valbracht, J.R., Patrick, K., Rhodes, G.H. J. Clin. Invest. (1995) [Pubmed]
  4. Different effects of point mutations within the B-Raf glycine-rich loop in colorectal tumors on mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase and nuclear factor kappaB pathway and cellular transformation. Ikenoue, T., Hikiba, Y., Kanai, F., Aragaki, J., Tanaka, Y., Imamura, J., Imamura, T., Ohta, M., Ijichi, H., Tateishi, K., Kawakami, T., Matsumura, M., Kawabe, T., Omata, M. Cancer Res. (2004) [Pubmed]
  5. Macromolecular complexes: SMN--the master assembler. Terns, M.P., Terns, R.M. Curr. Biol. (2001) [Pubmed]
  6. The cDNA sequence of a Type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Hanukoglu, I., Fuchs, E. Cell (1983) [Pubmed]
  7. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S., Barrell, B.G. Nature (1998) [Pubmed]
  8. Extensible collagen in mussel byssus: a natural block copolymer. Coyne, K.J., Qin, X.X., Waite, J.H. Science (1997) [Pubmed]
  9. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Hatano, M., Roberts, C.W., Minden, M., Crist, W.M., Korsmeyer, S.J. Science (1991) [Pubmed]
  10. Nucleocytoplasmic transport: cargo trafficking across the border. Weis, K. Curr. Opin. Cell Biol. (2002) [Pubmed]
  11. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function. Wilson, K.A., Bär, S., Maerz, A.L., Alizon, M., Poumbourios, P. J. Virol. (2005) [Pubmed]
  12. A structurally disordered region at the C terminus of capsid plays essential roles in multimerization and membrane binding of the gag protein of human immunodeficiency virus type 1. Liang, C., Hu, J., Whitney, J.B., Kleiman, L., Wainberg, M.A. J. Virol. (2003) [Pubmed]
  13. The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-hemolysin. Betsou, F., Sebo, P., Guiso, N. Infect. Immun. (1995) [Pubmed]
  14. Flexible glycine rich motif of Escherichia coli deoxyuridine triphosphate nucleotidohydrolase is important for functional but not for structural integrity of the enzyme. Vertessy, B.G. Proteins (1997) [Pubmed]
  15. Potentiation of the inhibitory effect of growth hormone-releasing hormone antagonists on PC-3 human prostate cancer by bombesin antagonists indicative of interference with both IGF and EGF pathways. Plonowski, A., Schally, A.V., Varga, J.L., Rekasi, Z., Hebert, F., Halmos, G., Groot, K. Prostate (2000) [Pubmed]
  16. Development of a pharmacokinetic limited sampling model for temozolomide and its active metabolite MTIC. Kirstein, M.N., Panetta, J.C., Gajjar, A., Nair, G., Iacono, L.C., Freeman, B.B., Stewart, C.F. Cancer Chemother. Pharmacol. (2005) [Pubmed]
  17. Extensive size polymorphism of the human keratin 10 chain resides in the C-terminal V2 subdomain due to variable numbers and sizes of glycine loops. Korge, B.P., Gan, S.Q., McBride, O.W., Mischke, D., Steinert, P.M. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  18. Developmental regulation and phytochrome-mediated induction of mRNAs encoding a proline-rich protein, glycine-rich proteins, and hydroxyproline-rich glycoproteins in Phaseolus vulgaris L. Sheng, J., Jeong, J., Mehdy, M.C. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  19. Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Parker, R., Phan, T., Baumeister, P., Roy, B., Cheriyath, V., Roy, A.L., Lee, A.S. Mol. Cell. Biol. (2001) [Pubmed]
  20. A novel WD repeat protein component of the methylosome binds Sm proteins. Friesen, W.J., Wyce, A., Paushkin, S., Abel, L., Rappsilber, J., Mann, M., Dreyfuss, G. J. Biol. Chem. (2002) [Pubmed]
  21. Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. Keller, B., Sauer, N., Lamb, C.J. EMBO J. (1988) [Pubmed]
  22. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. Levy, J.R., Sumner, C.J., Caviston, J.P., Tokito, M.K., Ranganathan, S., Ligon, L.A., Wallace, K.E., LaMonte, B.H., Harmison, G.G., Puls, I., Fischbeck, K.H., Holzbaur, E.L. J. Cell Biol. (2006) [Pubmed]
  23. The ubiquitous glucose transporter GLUT-1 belongs to the glucose-regulated protein family of stress-inducible proteins. Wertheimer, E., Sasson, S., Cerasi, E., Ben-Neriah, Y. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  24. Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). Friesen, W.J., Dreyfuss, G. J. Biol. Chem. (2000) [Pubmed]
  25. Heterocyst-forming filamentous cyanobacteria encode proteins that resemble eukaryotic RNA-binding proteins of the RNP family. Mulligan, M.E., Jackman, D.M., Murphy, S.T. J. Mol. Biol. (1994) [Pubmed]
  26. The P-loop--a common motif in ATP- and GTP-binding proteins. Saraste, M., Sibbald, P.R., Wittinghofer, A. Trends Biochem. Sci. (1990) [Pubmed]
  27. Anti-A2/RA33 autoantibodies are directed to the RNA binding region of the A2 protein of the heterogeneous nuclear ribonucleoprotein complex. Differential epitope recognition in rheumatoid arthritis, systemic lupus erythematosus, and mixed connective tissue disease. Skriner, K., Sommergruber, W.H., Tremmel, V., Fischer, I., Barta, A., Smolen, J.S., Steiner, G. J. Clin. Invest. (1997) [Pubmed]
  28. Ovule development: identification of stage-specific and tissue-specific cDNAs. Nadeau, J.A., Zhang, X.S., Li, J., O'Neill, S.D. Plant Cell (1996) [Pubmed]
  29. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. Suzuki, T., Miki, H., Takenawa, T., Sasakawa, C. EMBO J. (1998) [Pubmed]
  30. Cloning of an Apobec-1-binding protein that also interacts with apolipoprotein B mRNA and evidence for its involvement in RNA editing. Lau, P.P., Zhu, H.J., Nakamuta, M., Chan, L. J. Biol. Chem. (1997) [Pubmed]
  31. Cdc37 interacts with the glycine-rich loop of Hsp90 client kinases. Terasawa, K., Yoshimatsu, K., Iemura, S., Natsume, T., Tanaka, K., Minami, Y. Mol. Cell. Biol. (2006) [Pubmed]
  32. NADPH-cytochrome c reductase from human neutrophil membranes: purification, characterization and localization. Nisimoto, Y., Otsuka-Murakami, H., Iwata, S. Biochem. J. (1994) [Pubmed]
  33. Interactions of heterogeneous nuclear ribonucleoprotein D-like protein JKTBP and its domains with high-affinity binding sites. Kamei, D., Yamada, M. Gene (2002) [Pubmed]
  34. Protein N-arginine methylation in subcellular fractions of lymphoblastoid cells. Lin, C.H., Hsieh, M., Li, Y.C., Li, S.Y., Pearson, D.L., Pollard, K.M., Li, C. J. Biochem. (2000) [Pubmed]
  35. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Friesen, W.J., Paushkin, S., Wyce, A., Massenet, S., Pesiridis, G.S., Van Duyne, G., Rappsilber, J., Mann, M., Dreyfuss, G. Mol. Cell. Biol. (2001) [Pubmed]
  36. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Pellizzoni, L., Baccon, J., Charroux, B., Dreyfuss, G. Curr. Biol. (2001) [Pubmed]
  37. Determinants of the interaction of the spinal muscular atrophy disease protein SMN with the dimethylarginine-modified box H/ACA small nucleolar ribonucleoprotein GAR1. Whitehead, S.E., Jones, K.W., Zhang, X., Cheng, X., Terns, R.M., Terns, M.P. J. Biol. Chem. (2002) [Pubmed]
  38. Bombesin antagonists inhibit growth of MDA-MB-435 estrogen-independent breast cancers and decrease the expression of the ErbB-2/HER-2 oncoprotein and c-jun and c-fos oncogenes. Bajo, A.M., Schally, A.V., Krupa, M., Hebert, F., Groot, K., Szepeshazi, K. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  39. A new structural element containing glycine-rich proteins and rhamnogalacturonan I in the protoxylem of seed plants. Ryser, U., Schorderet, M., Guyot, R., Keller, B. J. Cell. Sci. (2004) [Pubmed]
  40. Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. Che, F.S., Watanabe, N., Iwano, M., Inokuchi, H., Takayama, S., Yoshida, S., Isogai, A. Plant Physiol. (2000) [Pubmed]
  41. A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes. Stephen, J.R., Dent, K.C., Finch-Savage, W.E. Gene (2003) [Pubmed]
  42. Glial-released proteins: II. Two-dimensional electrophoretic identification of proteins regulated by hydrocortisone. Arenander, A.T., de Vellis, J. Brain Res. (1981) [Pubmed]
WikiGenes - Universities