The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AC1L97MU     [6-[[6-[4-[4-(5-acetyloxy-4- hydroxy-4,6...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Toyomycin

  • Tailoring modification of deoxysugars during biosynthesis of the antitumour drug chromomycin A by Streptomyces griseus ssp. griseus [1].
  • The effects of both chromomycin and TFO on transcription were studied by using an HIV-1 LTR-directed in vitro transcription system [2].
  • Species specific differences in the toxicity of mithramycin, chromomycin A3, and olivomycin towards cultured mammalian cells [3].
  • Furthermore, confirmation of experiments relating sensitivity to nick translation and positivity to CMA3 may allow an indirect in situ visualization of nicked and partially denatured DNA, which could correlate with certain forms of male factor infertility [4].
  • Thick tissue slides (100 microm), stained for DNA with chromomycin A3, from 4 patients (with benign hyperplasia, prostatic intraepithelial neoplasia (PIN), and well-and poorly-differentiated adenocarcinoma of the prostate), were studied in order to test the practicability of the developed methodology [5].

High impact information on Toyomycin


Chemical compound and disease context of Toyomycin


Biological context of Toyomycin


Anatomical context of Toyomycin


Associations of Toyomycin with other chemical compounds


Gene context of Toyomycin

  • Interestingly, GC-rich DNA-binding protein inhibitors, mithramycin A and chromomycin A3, strongly suppressed TNF-alpha-induced fractalkine mRNA expression, possibly through inhibition of transcriptional activities by NF-kappaB and Sp1 [27].
  • The minor groove binder chromomycin A3 inhibited EGR1 complex formation but resulted in a smaller increase of the TBP complex [28].
  • Their potencies in inhibiting cell-free transcription and endogenous c-fos expression in NIH3T3 cells, however, were chromomycin > nogalamycin > Hoechst 33342 [29].
  • The polymorphic Sp100-rs repeat cluster in chromosome band 1D of the house mouse, Mus musculus, makes up as much as 0.1-5% of the haploid genome. 'High-copy' versions of this long-range repeat cluster are cytogenetically apparent as DAPI-negative chromomycin-A3-positive homogeneously staining regions (HSRs) [30].
  • Chromomycin A3 (CMA3) staining was used to determine protamine deficiency [31].

Analytical, diagnostic and therapeutic context of Toyomycin


  1. Tailoring modification of deoxysugars during biosynthesis of the antitumour drug chromomycin A by Streptomyces griseus ssp. griseus. Menéndez, N., Nur-E-Alam, M., Braña, A.F., Rohr, J., Salas, J.A., Méndez, C. Mol. Microbiol. (2004) [Pubmed]
  2. Targeting of the HIV-1 long terminal repeat with chromomycin potentiates the inhibitory effects of a triplex-forming oligonucleotide on Sp1-DNA interactions and in vitro transcription. Bianchi, N., Rutigliano, C., Passadore, M., Tomassetti, M., Pippo, L., Mischiati, C., Feriotto, G., Gambari, R. Biochem. J. (1997) [Pubmed]
  3. Species specific differences in the toxicity of mithramycin, chromomycin A3, and olivomycin towards cultured mammalian cells. Gupta, R.S. J. Cell. Physiol. (1982) [Pubmed]
  4. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Bianchi, P.G., Manicardi, G.C., Bizzaro, D., Bianchi, U., Sakkas, D. Biol. Reprod. (1993) [Pubmed]
  5. Three-dimensional DNA image cytometry by confocal scanning laser microscopy in thick tissue blocks of prostatic lesions. Irinopoulou, T., Vassy, J., Beil, M., Nicolopoulou, P., Encaoua, D., Rigaut, J.P. Cytometry. (1997) [Pubmed]
  6. High-speed chromosome sorting. Gray, J.W., Dean, P.N., Fuscoe, J.C., Peters, D.C., Trask, B.J., van den Engh, G.J., Van Dilla, M.A. Science (1987) [Pubmed]
  7. Human fibroblast chromatin states as effectors of the DNA-binding characteristics of benzo[a]pyrene anti-7,8-dihydrodiol 9,10-epoxide and two nonalkylating DNA-binding molecules. Warner, M.R., Iannaccone, P., Fahl, W.E. J. Natl. Cancer Inst. (1986) [Pubmed]
  8. The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. Saccone, S., De Sario, A., Della Valle, G., Bernardi, G. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  9. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter. Lenzmeier, B.A., Giebler, H.A., Nyborg, J.K. Mol. Cell. Biol. (1998) [Pubmed]
  10. Sialic acid in mature megakaryocytes: detection by wheat germ agglutinin. Schick, P.K., Filmyer, W.G. Blood (1985) [Pubmed]
  11. Transcriptional regulation of differentiation, selective toxicity and ATGCAAAT binding of bisbenzimidazole derivatives in human melanoma cells. Wong, S.S., Sturm, R.A., Michel, J., Zhang, X.M., Danoy, P.A., McGregor, K., Jacobs, J.J., Kaushal, A., Dong, Y., Dunn, I.S. Biochem. Pharmacol. (1994) [Pubmed]
  12. Binding of distamycin and chromomycin to human immunodeficiency type 1 virus DNA: a non-radioactive automated footprinting study. Feriotto, G., Mischiati, C., Bianchi, N., Passadore, M., Gambari, R. Eur. J. Pharmacol. (1995) [Pubmed]
  13. Detection and analysis by dual-laser flow cytometry of bacteriophage T4 DNA inside Escherichia coli. Sanders, C.A., Yajko, D.M., Nassos, P.S., Hyun, W.C., Fulwyler, M.J., Hadley, W.K. Cytometry. (1991) [Pubmed]
  14. Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. Bernas, T., Zarebski, M., Cook, R.R., Dobrucki, J.W., Cook, P.R. Journal of microscopy. (2004) [Pubmed]
  15. Mode of action of antitumour antibiotics. spectrophotometric studies on the interaction of chromomycin A3 with DNA and chromatin of normal and neoplastic tissue. Nayak, R., Sirsi, M., Podder, K. Biochim. Biophys. Acta (1975) [Pubmed]
  16. Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons. Chatterjee, S., Zaman, K., Ryu, H., Conforto, A., Ratan, R.R. Ann. Neurol. (2001) [Pubmed]
  17. Actinomycin D prevents nuclear processing of estrogen receptor. Horwitz, K.B., McGuire, W.L. J. Biol. Chem. (1978) [Pubmed]
  18. In vivo association of lamins with nucleic acids in Drosophila melanogaster. Rzepecki, R., Bogachev, S.S., Kokoza, E., Stuurman, N., Fisher, P.A. J. Cell. Sci. (1998) [Pubmed]
  19. Three-dimensional co-location of RNA polymerase I and DNA during interphase and mitosis by confocal microscopy. Gilbert, N., Lucas, L., Klein, C., Menager, M., Bonnet, N., Ploton, D. J. Cell. Sci. (1995) [Pubmed]
  20. Cytofluorometric DNA base determination for the investigation of heterochromatin and heterochromatin amplification. Leemann, U., Ruch, F. Exp. Cell Res. (1983) [Pubmed]
  21. NMR studies of chromomycin A3 interaction with DNA. Berman, E., Brown, S.C., James, T.L., Shafer, R.H. Biochemistry (1985) [Pubmed]
  22. Effect of the antitumor antibiotic chromomycin A3 on the humoral immune response in rats. Nayak, R., Prasad, K.S., Sirsi, M. Infect. Immun. (1975) [Pubmed]
  23. Development of enzyme immunoassay for chromomycin A3 and olivomycin using beta-D-galactosidase as a label. Fujiwara, K., Nakamura, H., Kitagawa, T. Cancer Res. (1985) [Pubmed]
  24. The human T-cell leukemia virus-1 transcriptional activator Tax enhances cAMP-responsive element-binding protein (CREB) binding activity through interactions with the DNA minor groove. Lundblad, J.R., Kwok, R.P., Laurance, M.E., Huang, M.S., Richards, J.P., Brennan, R.G., Goodman, R.H. J. Biol. Chem. (1998) [Pubmed]
  25. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Copenhaver, G.P., Putnam, C.D., Denton, M.L., Pikaard, C.S. Nucleic Acids Res. (1994) [Pubmed]
  26. Transferring the purine 2-amino group from guanines to adenines in DNA changes the sequence-specific binding of antibiotics. Bailly, C., Waring, M.J. Nucleic Acids Res. (1995) [Pubmed]
  27. Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. Ahn, S.Y., Cho, C.H., Park, K.G., Lee, H.J., Lee, S., Park, S.K., Lee, I.K., Koh, G.Y. Am. J. Pathol. (2004) [Pubmed]
  28. Effect of DNA-binding drugs on early growth response factor-1 and TATA box-binding protein complex formation with the herpes simplex virus latency promoter. Chiang, S.Y., Welch, J.J., Rauscher, F.J., Beerman, T.A. J. Biol. Chem. (1996) [Pubmed]
  29. Evaluation of the effectiveness of DNA-binding drugs to inhibit transcription using the c-fos serum response element as a target. White, C.M., Heidenreich, O., Nordheim, A., Beerman, T.A. Biochemistry (2000) [Pubmed]
  30. Origin of the chromosome 1 HSR of the house mouse detected by CGH. Traut, W., Weichenhan, D., Eickhoff, U., Winking, H. Chromosome Res. (1999) [Pubmed]
  31. Effect of protamine-2 deficiency on ICSI outcome. Nasr-Esfahani, M.H., Salehi, M., Razavi, S., Mardani, M., Bahramian, H., Steger, K., Oreizi, F. Reprod. Biomed. Online (2004) [Pubmed]
  32. Application of flow karyotyping in prenatal detection of chromosome aberrations. Gray, J.W., Trask, B., van den Engh, G., Silva, A., Lozes, C., Grell, S., Schonberg, S., Yu, L.C., Golbus, M.S. Am. J. Hum. Genet. (1988) [Pubmed]
  33. Ewing's tumor X mouse hybrids expressing the MIC2 antigen: analyses using fluorescence CDD-banding and non-isotopic ISH. Dworzak, M., Stock, C., Strehl, S., Gadner, H., Ambros, P.F. Hum. Genet. (1992) [Pubmed]
  34. Chromosome banding in amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura. Schmid, M. Chromosoma (1980) [Pubmed]
  35. DNA binding properties of minor groove binders and their influence on the topoisomerase II cleavage reaction. Bell, A., Kittler, L., Löber, G., Zimmer, C. J. Mol. Recognit. (1997) [Pubmed]
WikiGenes - Universities