The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

TPI1  -  triose-phosphate isomerase TPI1

Saccharomyces cerevisiae S288c

Synonyms: TIM, Triose-phosphate isomerase, Triosephosphate isomerase, YD9609.05C, YDR050C
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of TPI1


High impact information on TPI1

  • Tim23, an essential component of the protein import machinery of the inner membrane of mitochondria (TIM complex), forms dimers that display a dynamic behavior [3].
  • These comparisons are discussed in relation to the evolution of introns within TPI genes [4].
  • The larger domain (residues 143-420) is a regular 8-fold beta/alpha-barrel, as first found in triose phosphate isomerase, and later in pyruvate kinase and 11 other functionally different enzymes [5].
  • In this study, CRYPTOCHROME (CRY), a protein involved in circadian photoperception in Drosophila, is shown to block the function of PERIOD/TIMELESS (PER/TIM) heterodimeric complexes in a light-dependent fashion [6].
  • Biogenesis of Tim23 and Tim17, integral components of the TIM machinery for matrix-targeted preproteins [7].

Biological context of TPI1


Anatomical context of TPI1

  • Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively [12].
  • These include ribosome-associated factors and soluble factors in the cytosol, soluble factors in the mitochondrial intermembrane space, an additional TIM translocase in the inner membrane and a range of narrow specificity assembly factors in the inner membrane [13].
  • Tim44 is an essential component of the translocase of the inner mitochondrial membrane (TIM) complex that mediates transport of nuclear encoded mitochondrial precursors across the inner membrane [14].

Associations of TPI1 with chemical compounds


Regulatory relationships of TPI1


Other interactions of TPI1


Analytical, diagnostic and therapeutic context of TPI1


  1. NADH reoxidation does not control glycolytic flux during exposure of respiring Saccharomyces cerevisiae cultures to glucose excess. Brambilla, L., Bolzani, D., Compagno, C., Carrera, V., van Dijken, J.P., Pronk, J.T., Ranzi, B.M., Alberghina, L., Porro, D. FEMS Microbiol. Lett. (1999) [Pubmed]
  2. Species-specific inhibition of homologous enzymes by modification of nonconserved amino acids residues. The cysteine residues of triosephosphate isomerase. Garza-Ramos, G., Pérez-Montfort, R., Rojo-Domínguez, A., de Gómez-Puyou, M.T., Gómez-Puyou, A. Eur. J. Biochem. (1996) [Pubmed]
  3. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Bauer, M.F., Sirrenberg, C., Neupert, W., Brunner, M. Cell (1996) [Pubmed]
  4. Nucleotide sequence of the triosephosphate isomerase gene from Aspergillus nidulans: implications for a differential loss of introns. McKnight, G.L., O'Hara, P.J., Parker, M.L. Cell (1986) [Pubmed]
  5. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Lebioda, L., Stec, B. Nature (1988) [Pubmed]
  6. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Ceriani, M.F., Darlington, T.K., Staknis, D., Más, P., Petti, A.A., Weitz, C.J., Kay, S.A. Science (1999) [Pubmed]
  7. Biogenesis of Tim23 and Tim17, integral components of the TIM machinery for matrix-targeted preproteins. Káldi, K., Bauer, M.F., Sirrenberg, C., Neupert, W., Brunner, M. EMBO J. (1998) [Pubmed]
  8. Genetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesis. Shi, Y., Vaden, D.L., Ju, S., Ding, D., Geiger, J.H., Greenberg, M.L. J. Biol. Chem. (2005) [Pubmed]
  9. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Overkamp, K.M., Bakker, B.M., Kötter, P., Luttik, M.A., Van Dijken, J.P., Pronk, J.T. Appl. Environ. Microbiol. (2002) [Pubmed]
  10. Isolation of metabolic genes and demonstration of gene disruption in the phytopathogenic fungus Ustilago maydis. Kronstad, J.W., Wang, J., Covert, S.F., Holden, D.W., McKnight, G.L., Leong, S.A. Gene (1989) [Pubmed]
  11. Nucleotide sequence of the triose phosphate isomerase gene of Saccharomyces cerevisiae. Alber, T., Kawasaki, G. J. Mol. Appl. Genet. (1982) [Pubmed]
  12. Characterization of Mmp37p, a Saccharomyces cerevisiae mitochondrial matrix protein with a role in mitochondrial protein import. Gallas, M.R., Dienhart, M.K., Stuart, R.A., Long, R.M. Mol. Biol. Cell (2006) [Pubmed]
  13. Targeting of proteins to mitochondria. Lithgow, T. FEBS Lett. (2000) [Pubmed]
  14. Probing the membrane topology of a subunit of the mitochondrial protein translocase, Tim44, with biotin maleimide. Pavlov, P.F., Glaser, E. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  15. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. Ozcan, S., Freidel, K., Leuker, A., Ciriacy, M. J. Bacteriol. (1993) [Pubmed]
  16. Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis. Lolis, E., Petsko, G.A. Biochemistry (1990) [Pubmed]
  17. The influence of pH on the interaction of inhibitors with triosephosphate isomerase and determination of the pKa of the active-site carboxyl group. Hartman, F.C., LaMuraglia, G.M., Tomozawa, Y., Wolfenden, R. Biochemistry (1975) [Pubmed]
  18. Evidence for the involvement of the GTS1 gene product in the regulation of biological rhythms in the continuous culture of the yeast Saccharomyces cerevisiae. Wang, J., Liu, W., Mitsui, K., Tsurugi, K. FEBS Lett. (2001) [Pubmed]
  19. Gene expression analysis of cold and freeze stress in Baker's yeast. Rodriguez-Vargas, S., Estruch, F., Randez-Gil, F. Appl. Environ. Microbiol. (2002) [Pubmed]
  20. The structure of yeast enolase at 2.25-A resolution. An 8-fold beta + alpha-barrel with a novel beta beta alpha alpha (beta alpha)6 topology. Lebioda, L., Stec, B., Brewer, J.M. J. Biol. Chem. (1989) [Pubmed]
  21. Partial purification, substrate specificity and regulation of alpha-L-glycerolphosphate dehydrogenase from Saccharomyces carlsbergensis. Nader, W., Betz, A., Becker, J.U. Biochim. Biophys. Acta (1979) [Pubmed]
  22. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Geertman, J.M., van Maris, A.J., van Dijken, J.P., Pronk, J.T. Metab. Eng. (2006) [Pubmed]
  23. Crystal structure of the mutant yeast triosephosphate isomerase in which the catalytic base glutamic acid 165 is changed to aspartic acid. Joseph-McCarthy, D., Rost, L.E., Komives, E.A., Petsko, G.A. Biochemistry (1994) [Pubmed]
  24. Isolation and sequence analysis of the gene encoding triose phosphate isomerase from Zygosaccharomyces bailii. Merico, A., Rodrigues, F., Côrte-Real, M., Porro, D., Ranzi, B.M., Compagno, C. Yeast (2001) [Pubmed]
  25. Probing the catalytic mechanism of yeast triose phosphate isomerase by site-specific mutagenesis. Petsko, G.A., Davenport, R.C., Frankel, D., RaiBhandary, U.L. Biochem. Soc. Trans. (1984) [Pubmed]
  26. A protective monoclonal antibody specifically recognizes and alters the catalytic activity of schistosome triose-phosphate isomerase. Harn, D.A., Gu, W., Oligino, L.D., Mitsuyama, M., Gebremichael, A., Richter, D. J. Immunol. (1992) [Pubmed]
  27. Electrophilic catalysis in triosephosphate isomerase: the role of histidine-95. Komives, E.A., Chang, L.C., Lolis, E., Tilton, R.F., Petsko, G.A., Knowles, J.R. Biochemistry (1991) [Pubmed]
WikiGenes - Universities