The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PYC1  -  pyruvate carboxylase 1

Saccharomyces cerevisiae S288c

Synonyms: PCB 1, PYV, Pyruvate carboxylase 1, Pyruvic carboxylase 1, YGL062W
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PYC1


High impact information on PYC1


Biological context of PYC1

  • Concurrent expression from constitutive promoters of genes ICL1 and MLS1 (encoding malate synthase) also suppressed the growth phenotype of pyc1 pyc2 mutants [9].
  • These enzymatic changes were independent of the nature of the carbon source and closely correlated to the changes in beta-galactosidase from PYC1-lacZ gene fusion and in PYC1 transcripts [10].
  • Nevertheless, at the lowest ethanol fraction that supported growth of the Pyc- mutant, activities of the glyoxylate cycle enzymes in cell extracts were still sufficient to meet the requirement for C4-compounds in biomass synthesis [11].
  • Regulation of pyruvate carboxylase isozyme (PYC1, PYC2) gene expression in Saccharomyces cerevisiae during fermentative and nonfermentative growth [12].
  • We localized the previously isolated gene, which we designate PYC1, to chromosome VII [13].

Anatomical context of PYC1


Associations of PYC1 with chemical compounds

  • DV6.2 (PYC1, pyc2 delta) showed a 3.2-fold higher level of activity on ethanol minimal medium when compared to growth on glucose minimal medium, and supported growth in the absence of L-aspartate [12].
  • On ethanol minimal medium, the growth-related pattern of PYC1 and PYC2 expression was similar as shown by a 3.6-fold decline from early to mid log phase [12].
  • Moreover, the pyc1 null showed a strong requirement for L-aspartate for efficient growth, indicating the importance of PYC1 expression for the synthesis of C4 intermediates [12].
  • Transfer of exponentially growing cells of the pyc2 mutant from an aspartate or a glutamate medium to an ammonium medium caused a fivefold increase in PYC1 mRNA in less than 30 min, whereas in the inverse experiment, PYC1 transcripts returned within 30 min to the low levels found in aspartate/glutamate medium [10].
  • In Pyc- as well as in wild-type cultures, levels of isocitrate lyase, malate synthase and phospho-enol-pyruvate carboxykinase in cell extracts decreased with a decreasing ethanol content in the feed [11].

Other interactions of PYC1


Analytical, diagnostic and therapeutic context of PYC1


  1. Polymorphism of the yeast pyruvate carboxylase 2 gene and protein: effects on protein biotinylation. Val, D.L., Chapman-Smith, A., Walker, M.E., Cronan, J.E., Wallace, J.C. Biochem. J. (1995) [Pubmed]
  2. Quaternary structure of pyruvate carboxylase from Pseudomonas citronellolis. Cohen, N.D., Duc, J.A., Beegen, H., Utter, M.F. J. Biol. Chem. (1979) [Pubmed]
  3. Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains. Polyak, S.W., Chapman-Smith, A., Mulhern, T.D., Cronan, J.E., Wallace, J.C. J. Biol. Chem. (2001) [Pubmed]
  4. Pyruvate carboxylase is an essential protein in the assembly of yeast peroxisomal oligomeric alcohol oxidase. Ozimek, P., van Dijk, R., Latchev, K., Gancedo, C., Wang, D.Y., van der Klei, I.J., Veenhuis, M. Mol. Biol. Cell (2003) [Pubmed]
  5. Motile properties of the kinesin-related Cin8p spindle motor extracted from Saccharomyces cerevisiae cells. Gheber, L., Kuo, S.C., Hoyt, M.A. J. Biol. Chem. (1999) [Pubmed]
  6. Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. Palmieri, L., Vozza, A., Agrimi, G., De Marco, V., Runswick, M.J., Palmieri, F., Walker, J.E. J. Biol. Chem. (1999) [Pubmed]
  7. Sequence and domain structure of yeast pyruvate carboxylase. Lim, F., Morris, C.P., Occhiodoro, F., Wallace, J.C. J. Biol. Chem. (1988) [Pubmed]
  8. The control of the synthesis of pyruvate carboxylase in Pseudomonas citronellolis. Evience from double labeling studies. Taylor, B.L., Routman, S., Utter, M.F. J. Biol. Chem. (1975) [Pubmed]
  9. A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae. Blázquez, M.A., Gamo, F.J., Gancedo, C. FEBS Lett. (1995) [Pubmed]
  10. Regulation of pyc1 encoding pyruvate carboxylase isozyme I by nitrogen sources in Saccharomyces cerevisiae. Huet, C., Menendez, J., Gancedo, C., François, J.M. Eur. J. Biochem. (2000) [Pubmed]
  11. Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat cultures. de Jong-Gubbels, P., Bauer, J., Niederberger, P., Stückrath, I., Kötter, P., van Dijken, J.P., Pronk, J.T. Antonie Van Leeuwenhoek (1998) [Pubmed]
  12. Regulation of pyruvate carboxylase isozyme (PYC1, PYC2) gene expression in Saccharomyces cerevisiae during fermentative and nonfermentative growth. Brewster, N.K., Val, D.L., Walker, M.E., Wallace, J.C. Arch. Biochem. Biophys. (1994) [Pubmed]
  13. DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: analysis of pyruvate carboxylase-deficient strains. Stucka, R., Dequin, S., Salmon, J.M., Gancedo, C. Mol. Gen. Genet. (1991) [Pubmed]
  14. Location of three key enzymes of gluconeogenesis in baker's yeast. Haarasilta, S., Taskinen, L. Arch. Microbiol. (1977) [Pubmed]
  15. Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells. Fogolín, M.B., Wagner, R., Etcheverrigaray, M., Kratje, R. J. Biotechnol. (2004) [Pubmed]
  16. Hansenula polymorpha and Saccharomyces cerevisiae Pex5p's recognize different, independent peroxisomal targeting signals in alcohol oxidase. Ozimek, P., Kötter, P., Veenhuis, M., van der Klei, I.J. FEBS Lett. (2006) [Pubmed]
  17. Electron microscopic localization of pyruvate carboxylase in rat liver and Saccharomyces cerevisiae by immunogold procedures. Rohde, M., Lim, F., Wallace, J.C. Arch. Biochem. Biophys. (1991) [Pubmed]
  18. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Irani, N., Wirth, M., van Den Heuvel, J., Wagner, R. Biotechnol. Bioeng. (1999) [Pubmed]
  19. New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1. Rodríguez, C., Sanz, P., Gancedo, C. FEMS Yeast Res. (2003) [Pubmed]
  20. Yeast mutants defective in acetyl-coenzyme A carboxylase and biotin: apocarboxylase ligase. Mishina, M., Roggenkamp, R., Schweizer, E. Eur. J. Biochem. (1980) [Pubmed]
  21. Isolation of a yeast mutant deficient in pyruvate carboxylase activity. Walker, M.E., Wallace, J.C. Biochem. Int. (1991) [Pubmed]
WikiGenes - Universities