The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Z1046m  -  pyruvate-formate lyase

Escherichia coli O157:H7 str. EDL933

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Z1046m


High impact information on Z1046m

  • Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate [6].
  • We propose a homolytic radical mechanism for PFL that involves Cys 418 and Cys 419 both as thiyl radicals, with distinct chemical functions [7].
  • We have determined by X-ray crystallography the structures of PFL (non-radical form), its complex with the substrate analog oxamate, and the C418A,C419A double mutant [7].
  • During activation of the anaerobically induced pyruvate formate-lyase, the glycine residue of the pentapeptide becomes an organic radical [Wagner, A. F. V., Frey, M., Neugebauer, F. A., Schäfer, W. & Knappe, J. (1992) Proc. Natl. Acad. Sci. USA 89, 996-1000] [8].
  • Pyruvate formate-lyase (acetyl-CoA:formate C-acetyltransferase, EC from anaerobic Escherichia coli cells converts pyruvate to acetyl-CoA and formate by a unique homolytic mechanism that involves a free radical harbored in the protein structure [9].

Chemical compound and disease context of Z1046m


Biological context of Z1046m


Associations of Z1046m with chemical compounds


Other interactions of Z1046m


Analytical, diagnostic and therapeutic context of Z1046m


  1. Radical mechanisms of enzymatic catalysis. Frey, P.A. Annu. Rev. Biochem. (2001) [Pubmed]
  2. Cloning and sequence analysis of the pfl gene encoding pyruvate formate-lyase from Streptococcus mutans. Yamamoto, Y., Sato, Y., Takahashi-Abbe, S., Abbe, K., Yamada, T., Kizaki, H. Infect. Immun. (1996) [Pubmed]
  3. Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis. Asanuma, N., Hino, T. Appl. Environ. Microbiol. (2000) [Pubmed]
  4. Molecular characterization of the genes encoding pyruvate formate-lyase and its activating enzyme of Clostridium pasteurianum. Weidner, G., Sawers, G. J. Bacteriol. (1996) [Pubmed]
  5. Cloning of the D-lactate dehydrogenase gene from Lactobacillus delbrueckii subsp. bulgaricus by complementation in Escherichia coli. Bernard, N., Ferain, T., Garmyn, D., Hols, P., Delcour, J. FEBS Lett. (1991) [Pubmed]
  6. Anaerobic growth of a "strict aerobe" (Bacillus subtilis). Nakano, M.M., Zuber, P. Annu. Rev. Microbiol. (1998) [Pubmed]
  7. Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Becker, A., Fritz-Wolf, K., Kabsch, W., Knappe, J., Schultz, S., Volker Wagner, A.F. Nat. Struct. Biol. (1999) [Pubmed]
  8. A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene. Sun, X., Harder, J., Krook, M., Jörnvall, H., Sjöberg, B.M., Reichard, P. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  9. The free radical in pyruvate formate-lyase is located on glycine-734. Wagner, A.F., Frey, M., Neugebauer, F.A., Schäfer, W., Knappe, J. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  10. A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. Knappe, J., Sawers, G. FEMS Microbiol. Rev. (1990) [Pubmed]
  11. Inactivation of pyruvate formate-lyase by dioxygen: defining the mechanistic interplay of glycine 734 and cysteine 419 by rapid freeze-quench EPR. Zhang, W., Wong, K.K., Magliozzo, R.S., Kozarich, J.W. Biochemistry (2001) [Pubmed]
  12. Integration host factor is required for anaerobic pyruvate induction of pfl operon expression in Escherichia coli. Sirko, A., Zehelein, E., Freundlich, M., Sawers, G. J. Bacteriol. (1993) [Pubmed]
  13. Stabilization of pet operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate-lyase activities. Hespell, R.B., Wyckoff, H., Dien, B.S., Bothast, R.J. Appl. Environ. Microbiol. (1996) [Pubmed]
  14. Bacteriophage T4 gene 55.9 encodes an activity required for anaerobic ribonucleotide reduction. Young, P., Ohman, M., Sjöberg, B.M. J. Biol. Chem. (1994) [Pubmed]
  15. Generation of the glycyl radical of the anaerobic Escherichia coli ribonucleotide reductase requires a specific activating enzyme. Sun, X., Eliasson, R., Pontis, E., Andersson, J., Buist, G., Sjöberg, B.M., Reichard, P. J. Biol. Chem. (1995) [Pubmed]
  16. A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Sawers, G., Watson, G. Mol. Microbiol. (1998) [Pubmed]
  17. X-ray structure of pyruvate formate-lyase in complex with pyruvate and CoA. How the enzyme uses the Cys-418 thiyl radical for pyruvate cleavage. Becker, A., Kabsch, W. J. Biol. Chem. (2002) [Pubmed]
  18. Adenosylmethionine-dependent synthesis of the glycyl radical in pyruvate formate-lyase by abstraction of the glycine C-2 pro-S hydrogen atom. Studies of [2H]glycine-substituted enzyme and peptides homologous to the glycine 734 site. Frey, M., Rothe, M., Wagner, A.F., Knappe, J. J. Biol. Chem. (1994) [Pubmed]
  19. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Hesslinger, C., Fairhurst, S.A., Sawers, G. Mol. Microbiol. (1998) [Pubmed]
  20. Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions. Lara, A.R., Vazquez-Limón, C., Gosset, G., Bolívar, F., López-Munguía, A., Ramírez, O.T. Biotechnol. Bioeng. (2006) [Pubmed]
  21. Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli. Smith, G.M., Lee, S.A., Reilly, K.C., Eiteman, M.A., Altman, E. Biotechnol. Lett. (2006) [Pubmed]
  22. Pyruvate formate-lyase (inactive form) and pyruvate formate-lyase activating enzyme of Escherichia coli: isolation and structural properties. Conradt, H., Hohmann-Berger, M., Hohmann, H.P., Blaschkowski, H.P., Knappe, J. Arch. Biochem. Biophys. (1984) [Pubmed]
  23. Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis. Melchiorsen, C.R., Jokumsen, K.V., Villadsen, J., Johnsen, M.G., Israelsen, H., Arnau, J. J. Bacteriol. (2000) [Pubmed]
  24. Purification and crystallization of a proteolytic fragment of Escherichia coli pyruvate formate-lyase. Leppänen, V.M., Parast, C.V., Wong, K.K., Kozarich, J.W., Goldman, A. Acta Crystallogr. D Biol. Crystallogr. (1999) [Pubmed]
  25. Computer-Aided Design of the Stability of Pyruvate Formate-Lyase from Escherichia coli by Site-Directed Mutagenesis. Yang, D.F., Wei, Y.T., Huang, R.B. Biosci. Biotechnol. Biochem. (2007) [Pubmed]
WikiGenes - Universities