The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Aerobiosis


High impact information on Aerobiosis

  • Aerobiosis was necessary for fusions to appear in glucose-starved cultures [3].
  • Above 2.5 microM, a transition range to aerobiosis extended to about 16 microM O2 [4].
  • Erythrose inhibited the growth of a sodA sodB strain of Escherichia coli under aerobiosis; but did not inhibit anaerobic growth of the sodA sodB strain, or the aerobic growth of the superoxide dismutase (SOD)-competent parental strain [5].
  • Previous studies have established that succinate dehydrogenase (SDH) synthesis is elevated by aerobiosis and suppressed during growth with glucose [6].
  • (b) In aerobiosis, illumination increased the ATP/ADP ratio independently of the intensity used, whereas the amount of NADPH was decreased at limiting photon flux and regained the dark-adapted level under saturating photon flux [7].

Chemical compound and disease context of Aerobiosis


Biological context of Aerobiosis

  • In contrast, in aerobiosis, polyphosphate hydrolysis was induced by addition of either CCCP or a vacuolar membrane ATPase-specific inhibitor, bafilomycin A1 [12].
  • By using chromosomally integrated fixR-lacZ fusions, the level of expression of the fixR nifA operon was found to be fivefold higher under reduced oxygen tension than under aerobiosis [13].
  • SUT1 constitutive expression in aerobiosis suppressed the ts phenotype of the sec14-1 mutation, restored growth of the sec14-null mutant and corrected the translocation defect of the vacuolar carboxypeptidase Y [14].
  • Effect of dimethyl sulphoxide (DMSO) on mitochondrial biogenesis in regenerating rat liver and cells of Saccharomyces cerevisiae during aerobiosis has been studied by monitoring the cytochrome oxidase activity [15].

Associations of Aerobiosis with chemical compounds


Gene context of Aerobiosis


  1. Use of site-directed mutagenesis to identify an upstream regulatory sequence of sodA gene of Escherichia coli K-12. Naik, S.M., Hassan, H.M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  2. Differential regulation of periplasmic nitrate reductase gene (napKEFDABC) expression between aerobiosis and anaerobiosis with nitrate in a denitrifying phototroph Rhodobacter sphaeroides f. sp. denitrificans. Tabata, A., Yamamoto, I., Matsuzaki, M., Satoh, T. Arch. Microbiol. (2005) [Pubmed]
  3. The roles of starvation and selective substrates in the emergence of araB-lacZ fusion clones. Maenhaut-Michel, G., Shapiro, J.A. EMBO J. (1994) [Pubmed]
  4. Oxygen dependent regulation of DNA synthesis and growth of Ehrlich ascites tumor cells in vitro and in vivo. Probst, H., Schiffer, H., Gekeler, V., Kienzle-Pfeilsticker, H., Stropp, U., Stötzer, K.E., Frenzel-Stötzer, I. Cancer Res. (1988) [Pubmed]
  5. Superoxide dependence of the toxicity of short chain sugars. Benov, L., Fridovich, I. J. Biol. Chem. (1998) [Pubmed]
  6. Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Park, S.J., Tseng, C.P., Gunsalus, R.P. Mol. Microbiol. (1995) [Pubmed]
  7. In vivo changes of the oxidation-reduction state of NADP and of the ATP/ADP cellular ratio linked to the photosynthetic activity in Chlamydomonas reinhardtii. Forti, G., Furia, A., Bombelli, P., Finazzi, G. Plant Physiol. (2003) [Pubmed]
  8. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. Alexeeva, S., Hellingwerf, K.J., Teixeira de Mattos, M.J. J. Bacteriol. (2003) [Pubmed]
  9. Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli. Benoit, S., Abaibou, H., Mandrand-Berthelot, M.A. J. Bacteriol. (1998) [Pubmed]
  10. Influence of nar (nitrate reductase) genes on nitrate inhibition of formate-hydrogen lyase and fumarate reductase gene expression in Escherichia coli K-12. Stewart, V., Berg, B.L. J. Bacteriol. (1988) [Pubmed]
  11. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. Iuchi, S., Weiner, L. J. Biochem. (1996) [Pubmed]
  12. Differential sensitivity of the cellular compartments of Saccharomyces cerevisiae to protonophoric uncoupler under fermentative and respiratory energy supply. Beauvoit, B., Rigoulet, M., Raffard, G., Canioni, P., Guérin, B. Biochemistry (1991) [Pubmed]
  13. Dual control of the Bradyrhizobium japonicum symbiotic nitrogen fixation regulatory operon fixR nifA: analysis of cis- and trans-acting elements. Thöny, B., Anthamatten, D., Hennecke, H. J. Bacteriol. (1989) [Pubmed]
  14. SUT1 suppresses sec14-1 through upregulation of CSR1 in Saccharomyces cerevisiae. Régnacq, M., Ferreira, T., Puard, J., Bergès, T. FEMS Microbiol. Lett. (2002) [Pubmed]
  15. Effect of dimethyl sulphoxide on mitochondrial biogenesis in regenerating rat liver and Saccharomyces cerevisiae. Desai, S.D., Pasupathy, K., Chetty, K.G., Pradhan, D.S. Indian J. Biochem. Biophys. (1989) [Pubmed]
  16. Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Müller, M., Gorrell, T.E. Antimicrob. Agents Chemother. (1983) [Pubmed]
  17. Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions. Bertoldi, M., Borri Voltattorni, C. Biochem. J. (2000) [Pubmed]
  18. Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. Jensen-Pergakes, K., Guo, Z., Giattina, M., Sturley, S.L., Bard, M. J. Bacteriol. (2001) [Pubmed]
  19. Mapping stress-induced changes in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12. DeLisa, M.P., Valdes, J.J., Bentley, W.E. J. Bacteriol. (2001) [Pubmed]
  20. Isolation and characterization of the Saccharomyces cerevisiae SUT1 gene involved in sterol uptake. Bourot, S., Karst, F. Gene (1995) [Pubmed]
  21. General resistance to sterol biosynthesis inhibitors in Saccharomyces cerevisiae. Ladevèze, V., Marcireau, C., Delourme, D., Karst, F. Lipids (1993) [Pubmed]
  22. SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process. Alimardani, P., Régnacq, M., Moreau-Vauzelle, C., Ferreira, T., Rossignol, T., Blondin, B., Bergès, T. Biochem. J. (2004) [Pubmed]
  23. Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. Kwast, K.E., Lai, L.C., Menda, N., James, D.T., Aref, S., Burke, P.V. J. Bacteriol. (2002) [Pubmed]
  24. Three overlapping lct genes involved in L-lactate utilization by Escherichia coli. Dong, J.M., Taylor, J.S., Latour, D.J., Iuchi, S., Lin, E.C. J. Bacteriol. (1993) [Pubmed]
WikiGenes - Universities