The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Osteochondroma


Psychiatry related information on Osteochondroma


High impact information on Osteochondroma


Chemical compound and disease context of Osteochondroma


Biological context of Osteochondroma


Anatomical context of Osteochondroma


Gene context of Osteochondroma

  • In contrast, no somatic EXT1 cDNA alterations were found in sporadic osteochondromas [1].
  • We have analyzed the EXT1 and EXT2 genes in 9 unrelated EXT families and in a patient with a sporadic osteochondroma, all originating from Italy [7].
  • In osteochondroma of the jaws, CDK4 and E2F with an equal positivity of 12.5% (1 of 8), whereas p27 was positive 75% (6 of 8) [23].
  • Role of FGF9 and FGF receptor 3 in osteochondroma formation [24].
  • To clarify the pathogenesis of chondrolipoma, we examined the expressions and localizations of TGF-beta1, -beta2, -beta3, BMP, and LTBP-1 in our rare case by immunohistochemical staining, and compared them with the staining patterns seen in normal human tracheal cartilage tissue and osteochondroma (controls) [25].

Analytical, diagnostic and therapeutic context of Osteochondroma


  1. EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcomas. Bovée, J.V., Cleton-Jansen, A.M., Wuyts, W., Caethoven, G., Taminiau, A.H., Bakker, E., Van Hul, W., Cornelisse, C.J., Hogendoorn, P.C. Am. J. Hum. Genet. (1999) [Pubmed]
  2. Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells. Ropero, S., Setien, F., Espada, J., Fraga, M.F., Herranz, M., Asp, J., Benassi, M.S., Franchi, A., Patiño, A., Ward, L.S., Bovee, J., Cigudosa, J.C., Wim, W., Esteller, M. Hum. Mol. Genet. (2004) [Pubmed]
  3. Matrix metalloproteinase digestion of aggrecan in human cartilage tumours. Toriyama, M., Rosenberg, A.E., Mankin, H.J., Fondren, T., Treadwell, B.V., Towle, C.A. Eur. J. Cancer (1998) [Pubmed]
  4. Expression of c-met proto-oncogene product (c-MET) in benign and malignant bone tumors. Naka, T., Iwamoto, Y., Shinohara, N., Ushijima, M., Chuman, H., Tsuneyoshi, M. Mod. Pathol. (1997) [Pubmed]
  5. Osteochondroma: an unusual cause of vascular disease in young adults. Eschelman, D.J., Gardiner, G.A., Deely, D.M. Journal of vascular and interventional radiology : JVIR. (1995) [Pubmed]
  6. Trichorhinophalangeal syndrome type III. Itin, P.H., Bohn, S., Mathys, D., Guggenheim, R., Richard, G. Dermatology (Basel) (1996) [Pubmed]
  7. Ext-mutation analysis in Italian sporadic and hereditary osteochondromas. Gigante, M., Matera, M.G., Seripa, D., Izzo, A.M., Venanzi, R., Giannotti, A., Digilio, M.C., Gravina, C., Lazzari, M., Monteleone, G., Monteleone, M., Dallapiccola, B., Fazio, V.M. Int. J. Cancer (2001) [Pubmed]
  8. Developmental pathways in musculoskeletal neoplasia: involvement of the Indian Hedgehog-parathyroid hormone-related protein pathway. Tiet, T.D., Alman, B.A. Pediatr. Res. (2003) [Pubmed]
  9. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Bovée, J.V., van den Broek, L.J., Cleton-Jansen, A.M., Hogendoorn, P.C. Lab. Invest. (2000) [Pubmed]
  10. Involvement of BMP-2 signaling in a cartilage cap in osteochondroma. Nakase, T., Myoui, A., Shimada, K., Kuriyama, K., Joyama, S., Miyaji, T., Tomita, T., Yoshikawa, H. J. Orthop. Res. (2001) [Pubmed]
  11. Chondrosarcoma causing cervical neural foramen widening. Yünten, N., Calli, C., Zileli, M., Ustün, E.E., Sener, R.N. European radiology. (1997) [Pubmed]
  12. Cervical myelopathy caused by an exostosis of the posterior arch of C1. Chooi, Y.S., Siow, Y.S., Chong, C.S. The Journal of bone and joint surgery. British volume. (2005) [Pubmed]
  13. Osteochondroma of the C5 lamina with cord compression: case report and review of the literature. Ratliff, J., Voorhies, R. Spine. (2000) [Pubmed]
  14. Arthroscopic removal of a palmar radial osteochondroma causing carpal canal syndrome in a horse. Squire, K.R., Adams, S.B., Widmer, W.R., Coatney, R.W., Habig, C. J. Am. Vet. Med. Assoc. (1992) [Pubmed]
  15. Cervical osteochondroma (C2 level) with vertebral artery occlusion and second cervical nerve root irritation. George, B., Atallah, A., Laurian, C., Tayon, B., Mikol, J. Surgical neurology. (1989) [Pubmed]
  16. Recurring breakpoints of 1p13 approximately p22 in osteochondroma. Sawyer, J.R., Thomas, E.L., Lukacs, J.L., Swanson, C.M., Ding, Y., Parham, D.M., Thomas, J.R., Nicholas, R.W. Cancer Genet. Cytogenet. (2002) [Pubmed]
  17. Selective increase in expression of isoform PP1 gamma 1 of type-1 protein phosphatase in chondrosarcoma cells. Sogawa, K., Yamada, T., Funamoto, Y., Kohno, K., Nishikawa, H., Kishida, F., Hamazaki, F., Yamashita, N., Matsumoto, K. Res. Commun. Mol. Pathol. Pharmacol. (1994) [Pubmed]
  18. Costal osteochondroma. A rare cause of spinal cord compression. Tang, W.M., Luk, K.D., Leong, J.C. Spine. (1998) [Pubmed]
  19. The short-lived exostosis induced surgically versus the lasting genetic hereditary multiple exostoses. Trebicz-Geffen, M., Nevo, Z., Evron, Z., Posternak, N., Glaser, T., Fridkin, M., Kollander, Y., Robinson, D. Exp. Mol. Pathol. (2003) [Pubmed]
  20. A rare case of carpal tunnel syndrome due to tenosynovial osteochondroma. Nather, A., Chong, P.Y. Journal of hand surgery (Edinburgh, Lothian) (1986) [Pubmed]
  21. The identity of proliferating cells in bone tumors with cartilaginous components: evaluation by double-immunohistochemical staining using proliferating cell nuclear antigen and S-100 protein. Chano, T., Ishizawa, M., Matsumoto, K., Morimoto, S., Hukuda, S., Okabe, H. European journal of histochemistry : EJH. (1995) [Pubmed]
  22. I-Naphthyl acetate esterase isoenzymes in synovial fluids and radiography of temporomandibular and knee joints. Yoshimura, Y., Takada, K. International journal of oral surgery. (1980) [Pubmed]
  23. Expression and significance of cell cycle-related proteins Cyclin Dl, CDK4, p27, E2F-l and Ets-1 in chondrosarcoma of the jaws. Si, X., Liu, Z. Oral Oncol. (2001) [Pubmed]
  24. Role of FGF9 and FGF receptor 3 in osteochondroma formation. Robinson, D., Hasharoni, A., Oganesian, A., Sandell, L.J., Yayon, A., Nevo, Z. Orthopedics. (2001) [Pubmed]
  25. Immunohistochemical study of chondrolipoma: possible importance of transforming growth factor (TGF)-betas, latent TGF-beta binding protein-1 (LTBP-1), and bone morphogenetic protein (BMP) for chondrogenesis in lipoma. Nakano, M., Arai, E., Nakajima, Y., Nakamura, H., Miyazono, K., Hirose, T. J. Dermatol. (2003) [Pubmed]
  26. Uncommon clinical course of multiple osteochondromatosis in a patient with a long-term history of Cushing's disease. Faggiano, A., Pivonello, R., Ruosi, C., Somma, E., Imbimbo, M., Filippella, M., Lombardi, G., Colao, A. Pituitary (2001) [Pubmed]
WikiGenes - Universities