The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Foramen Magnum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Foramen Magnum

 

High impact information on Foramen Magnum

  • Measurements from 156 midsagittal and 63 coronal MRI scans performed on 123 normal adults, placed the iter of the aqueduct 0.2 +/- 0.8 mm (mean +/- SD) below the incisural line and the cerebellar tonsils 0.1 +/- 2.1 mm below the foramen magnum line [6].
  • The findings suggest that the P14 component is generated above the foramen magnum, whereas the cervical N13 has a spinal generator [7].
  • We studied the effects on CSF dynamics at the foramen magnum and the clinical significance of the abnormal tonsillar motion in 14 patients with Chiari type I malformation and 14 control subjects using cine phase-contrast MRI [8].
  • Modeling results revealed that the presence of a contralateral craniotomy significantly reduced surrogate tissue herniation through the foramen magnum, allowed surrogate tissue movement across the sagittal midline, and resulted in an appreciable increase in the shear strain in the contralateral cortex during the impact [9].
  • Standard midline or lateral suboccipital approaches with opening of the foramen magnum and laminectomy of the involved cervical segments were sufficient for the great majority of tumors [10].
 

Biological context of Foramen Magnum

 

Anatomical context of Foramen Magnum

  • A flexion-extension metrizamide-enhanced CT technique has been developed to study the craniocervical junction that refines evaluation of the relation between the spinal cord and the foramen magnum, atlas, and axis [13].
  • Dynamic display of the acquired images demonstrated downward displacement of the presaturation bolus on the cerebellar tonsils and medulla oblongata (or upper cervical cord) at the C1 level in all preoperative examinations and in two patients after syringosubarachnoid shunting but with residual foramen magnum obstruction [14].
  • Ontogenetic studies of the fetal tentorium suggest that its midline profile rotates inferoposteriorly towards the foramen magnum in response to disproportionate growth of the cerebrum [15].
  • In 15 fresh specimens we exposed the posterior cranial fossa with a coronal cut through the foramen magnum and explored the course of each posterior medullary rootlet (PMR) arising from within the retro-olivary groove [16].
  • Mercuric chloride was injected intracranially into the rat brain in the region of the fourth ventricle via the foramen magnum [17].
 

Associations of Foramen Magnum with chemical compounds

 

Gene context of Foramen Magnum

  • The lesion was located in the cervico-thoracic spine (foramen magnum to T1) in one case, thoracic spine (T9-T12) with the back swelling at L2-4 level in the second, and in the third, one mass extended from C6 to T11 and the other mass was located in the L1-2 level, separately [22].
  • The transfacial approach provides excellent access for this type of extensive midline tumor requiring resection from the suprasellar region down to the foramen magnum [23].
  • The dura was opened at the area of the foramen magnum and C1 [24].
  • Intradural extraosseous chordoma in the foramen magnum region. Case report [25].
  • The recovery curve of the amplitude between the far field potentials P27 (which most probably reflects activity of the afferent volley at the level of foramen magnum) and N30 (which, by latency criteria, would reflect lemniscal or thalamic activity) showed a similar shape but with a shorter duration of the periods of super- and subnormality [26].
 

Analytical, diagnostic and therapeutic context of Foramen Magnum

References

  1. Pituitary tumours are multiclonal from the outset: evidence from a case with dural metastases. Buch, H., El-Hadd, T., Bicknell, J., Simpson, D.J., Farrell, W.E., Clayton, R.N. Clin. Endocrinol. (Oxf) (2002) [Pubmed]
  2. Chiari malformation associated with vitamin D-resistant rickets: case report. Kuether, T.A., Piatt, J.H. Neurosurgery (1998) [Pubmed]
  3. Features of spontaneous improvement in syringomyelia with low-situated cerebellar tonsils. Sudo, K., Tashiro, K., Miyasaka, K. Acta neurologica Belgica. (1998) [Pubmed]
  4. Placement of baclofen pumps through the foramen magnum and upper cervical spine. Dziurzynski, K., McLeish, D., Ward, M., Iskandar, B.J. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. (2006) [Pubmed]
  5. MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Greitz, D., Hannerz, J., Rähn, T., Bolander, H., Ericsson, A. Acta radiologica (Stockholm, Sweden : 1987) (1994) [Pubmed]
  6. Magnetic resonance imaging measurements and clinical changes accompanying transtentorial and foramen magnum brain herniation. Reich, J.B., Sierra, J., Camp, W., Zanzonico, P., Deck, M.D., Plum, F. Ann. Neurol. (1993) [Pubmed]
  7. Dissociation of early SEP components in unilateral traumatic section of the lower medulla. Mauguière, F., Courjon, J., Schott, B. Ann. Neurol. (1983) [Pubmed]
  8. Motion of the cerebellar tonsils in Chiari type I malformation studied by cine phase-contrast MRI. Pujol, J., Roig, C., Capdevila, A., Pou, A., Martí-Vilalta, J.L., Kulisevsky, J., Escartín, A., Zannoli, G. Neurology (1995) [Pubmed]
  9. Modification of the cortical impact model to produce axonal injury in the rat cerebral cortex. Meaney, D.F., Ross, D.T., Winkelstein, B.A., Brasko, J., Goldstein, D., Bilston, L.B., Thibault, L.E., Gennarelli, T.A. J. Neurotrauma (1994) [Pubmed]
  10. Surgical results for meningiomas of the craniocervical junction. Samii, M., Klekamp, J., Carvalho, G. Neurosurgery (1996) [Pubmed]
  11. Phase-contrast MR imaging of the cervical CSF and spinal cord: volumetric motion analysis in patients with Chiari I malformation. Hofmann, E., Warmuth-Metz, M., Bendszus, M., Solymosi, L. AJNR. American journal of neuroradiology. (2000) [Pubmed]
  12. Input-output organization of the foot motor area in humans. Machii, K., Ugawa, Y., Terao, Y., Hanajima, R., Furubayashi, T., Mochizuki, H., Shiio, Y., Enomoto, H., Uesugi, H., Kuzuhara, S., Kanazawa, I. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. (1999) [Pubmed]
  13. Assessment of craniocervical junction and atlantoaxial relation using metrizamide-enhanced CT in flexion and extension. Osborne, D., Triolo, P., Dubois, P., Drayer, B., Heinz, E. AJNR. American journal of neuroradiology. (1983) [Pubmed]
  14. Increased pulsatile movement of the hindbrain in syringomyelia associated with the Chiari malformation: cine-MRI with presaturation bolus tracking. Terae, S., Miyasaka, K., Abe, S., Abe, H., Tashiro, K. Neuroradiology. (1994) [Pubmed]
  15. Differential regional brain growth and rotation of the prenatal human tentorium cerebelli. Jeffery, N. J. Anat. (2002) [Pubmed]
  16. Anatomical evidence for the absence of a morphologically distinct cranial root of the accessory nerve in man. Lachman, N., Acland, R.D., Rosse, C. Clinical anatomy (New York, N.Y.) (2002) [Pubmed]
  17. Neurological and behavioral effects of intracranial administration of mercuric chloride on rats. Venable, H.L., Mills, S.H. Journal of toxicology and environmental health. (1977) [Pubmed]
  18. Dural arteriovenous fistulae at the foramen magnum. Reinges, M.H., Thron, A., Mull, M., Huffmann, B.C., Gilsbach, J.M. J. Neurol. (2001) [Pubmed]
  19. Multiplanar metrizamide-enhanced CT imaging of the foramen magnum. LaMasters, D.L., Watanabe, T.J., Chambers, E.F., Norman, D., Newton, T.H. AJNR. American journal of neuroradiology. (1982) [Pubmed]
  20. Foramen magnum syndrome secondary to calcium pyrophosphate crystal deposition in the transverse ligament of the atlas. Assaker, R., Louis, E., Boutry, N., Bera-Louville, A., Paul Lejeune, J. Spine. (2001) [Pubmed]
  21. Occipital condyle fracture and ligament injury: imaging by CT. Bloom, A.I., Neeman, Z., Floman, Y., Gomori, J., Bar-Ziv, J. Pediatric radiology. (1996) [Pubmed]
  22. Spinal intramedullary lipoma: report of three cases. Kim, C.H., Wang, K.C., Kim, S.K., Chung, Y.N., Choi, Y.L., Chi, J.G., Cho, B.K. Spinal Cord (2003) [Pubmed]
  23. Resection of giant invasive pituitary tumors through a transfacial approach: technical case report. Anson, J.A., Segal, M.N., Baldwin, N.G., Neal, D. Neurosurgery (1995) [Pubmed]
  24. Syringomyelia associated with Hajdu-Cheney syndrome: case report. Tanimoto, A., Tamaki, N., Nagashima, T., Nakamura, M. Neurosurgery (1996) [Pubmed]
  25. Intradural extraosseous chordoma in the foramen magnum region. Case report. Katayama, Y., Tsubokawa, T., Hirasawa, T., Takahata, T., Nemoto, N. J. Neurosurg. (1991) [Pubmed]
  26. Recovery functions of spinal cord and subcortical somatosensory evoked potentials to posterior tibial nerve stimulation: intrasurgical recordings. Lüders, H., Lesser, R., Gurd, A., Klem, G. Brain Res. (1984) [Pubmed]
  27. Hypertrophic pachymeningitis as a result of a retropharyngeal inflammatory pseudotumor: case report. Matsumoto, K., Natori, Y., Hirokawa, E., Iwaki, T. Neurosurgery (2002) [Pubmed]
  28. Autotomography with metrizamide myelography: an aid to visualisation of the cranio-cervical junction and cerebellar tonsils. Doyle, T., Tress, B. Clinical radiology. (1983) [Pubmed]
  29. Advanced Chiari malformation type I with marked spinal cord atrophy. Case report. Ito, Y., Tsuboi, K., Akutsu, H., Ihara, S., Matsumura, A. Journal of neurosurgery. Spine. (2005) [Pubmed]
  30. Endoscopic endonasal skull base surgery: Part 3--The clivus and posterior fossa. Jho, H.D., Ha, H.G. Minimally invasive neurosurgery : MIN. (2004) [Pubmed]
 
WikiGenes - Universities